Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Giải Toán 12 Chân trời sáng tạo trang 25 → 36

Tháng 7 16, 2024 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Giải Toán 12 Chân trời sáng tạo trang 25 → 36 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản là tài liệu vô cùng hữu ích giúp các em học sinh có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 12 Chân trời sáng tạo tập 1 trang 25 → 36.

Giải bài tập Toán 12 Chân trời sáng tạo tập 1 Bài 4 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 4 Chương I: Ứng dụng đạo hàm để khảo sát hàm số. Mời thầy cô và các em theo dõi bài viết dưới đây của thcshuynhphuoc-np.edu.vn:

Mục Lục Bài Viết

  • Giải Toán 12 Chân trời sáng tạo Tập 1 trang 36
    • Bài 1
    • Bài 2
    • Bài 3
    • Bài 4
    • Bài 5
    • Bài 6

Giải Toán 12 Chân trời sáng tạo Tập 1 trang 36

Bài 1

Khảo sát và vẽ đồ thị của các hàm số sau:

a) y = x3 + x – 2

b) Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Giải Toán 12 Chân trời sáng tạo trang 25 → 36

Hướng dẫn giải:

a) Xét hàm số: y = x3 + x – 2

1. Tập xác định: mathbb{R}.

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y’ = 3x2 + 1. Do y’ > 0 trên mathbb{R} nên hàm số đồng biến trên khoảng (– ∞; +infty ).

Hàm số đã cho không có cực trị.

  • Các giới hạn tại vô cực:

lim_{x rightarrow -infty} y=lim_{x rightarrow -infty}x^3 left ( 1+frac{1}{x^2 }-frac{ 2}{x^3}  right ) =-∞

lim_{x rightarrow +infty} y=lim_{x rightarrow +infty}x^3 left ( 1+frac{1}{x^2 }-frac{ 2}{x^3}  right ) =+∞

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Khi x = 0 thì y = – 2 nên (0; – 2) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ x3 + x – 2 = 0

⇔ x = 1.

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0).

Đồ thị của hàm số có tâm đối xứng là điểm I(0; – 2).

Khảo sát và vẽ đồ thị một số hàm số cơ bản

b) Xét hàm số: Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Giải Toán 12 Chân trời sáng tạo trang 25 → 36

1. Tập xác định: mathbb{R}.

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y'=6x^2 + 2x-frac{1}{2}.

y’ = 0 ⇔ x=-frac{1}{2} hoặc x=frac{1}{6}

Trên các khoảng (– ∞; – frac{ 1}{ 2} ) và (frac{ 1}{6} ; + ∞), y‘ > 0 nên hàm số đồng biến trên mỗi khoảng đó.

Trên khoảng (– frac{ 1}{ 2} ; frac{1}{6} ), y‘ < 0 nên hàm số nghịch biến trên khoảng đó.

  • Cực trị:

Hàm số đạt cực đại tại x=-frac{1}{2} và y_{CĐ}=-frac{11}{4}.

Hàm số đạt cực tiểu tại x=frac{1}{6} và y_{CT}=-frac{329}{108}.

  • Các giới hạn tại vô cực:

lim_{x rightarrow -infty} y=lim_{x rightarrow -infty}x^3 left ( 2+frac{1}{x }+frac{1}{2x^2 }-frac{ 3}{x^3}  right ) =-∞

lim_{x rightarrow +infty} y=lim_{x rightarrow +infty}x^3 left ( 2+frac{1}{x }+frac{1}{2x^2 }-frac{ 3}{x^3}  right ) =+∞

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Khi x = 0 thì y = – 3 nên (0; – 3) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ 2x^3 + x^2 -  frac{ 1}{ 2} x  - 3 =0

⇔ x = 1,06

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1,063; 0).

Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bài 2

Cho hàm số y = x3 – 3x2 + 2.

a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y” = 0.

Khám Phá Thêm:   Cách đăng ký cuộc thi Học và làm theo Bác 2023

b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.

Hướng dẫn giải:

a) Tập xác định của hàm số: mathbb{R}.

Ta có: y’ = 3x2 – 6x

y” = 6x – 6; y” = 0 ⇔ x = 1.

=> Tọa độ điểm I(1; 0).

b) Ta có: y’ = 0 ⇔ 3x2 – 6x = 0

⇔ x = 0 hoặc x = 2.

Lập bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

Hàm số đạt cực đại tại x = 0 và yCĐ = 2

Hàm số đạt cực đại tại x = 2 và yCT = – 2

Tọa độ trung điểm của đoạn thẳng nối hai cực trị là (1; 0).

Vậy I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số

Bài 3

Khảo sát và vẽ đồ thị của các hàm số sau:

a) y=3+frac{1}{x}

b) y = frac{x-3}{1-x}.

Hướng dẫn giải:

a) y=3+frac{1}{x} =frac{3x+1}{x}

1. Tập xác định: D=mathbb{R} setminus left { 0 right }

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y'=-frac{1}{x^2}. Vì y‘ < 0 nên hàm số nghịch biến trên mỗi khoảng (– ∞; 0) và (0; + ∞).

  • Tiệm cận:

Ta có: lim_{x rightarrow +infty} y = lim_{x rightarrow +infty}  left ( 3+frac{1}{x}  right )  =3;lim_{x rightarrow -infty} y = lim_{x rightarrow -infty} left ( 3+frac{1}{x}  right )  = 3. Suy ra đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số.

Ta có: lim_{x rightarrow 0^+} y = lim_{x rightarrow 0^+}  left ( 3+frac{1}{x}  right )  =+infty ;lim_{x rightarrow 0^-} y = lim_{x rightarrow 0^-} left (3+frac{1}{x}  right )  =-infty. Suy ra đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Ta có y = 0 ⇔ 3+frac{ 1}{x }=0

⇔ x=-frac{1}{3}

Vậy đồ thị của hàm số giao với trục Ox tại điểm left(-frac{1}{3};0right)

Tâm đối xứng của đồ thị hàm số là điểm I(0; 3).

Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 0 và y = 3.

Khảo sát và vẽ đồ thị một số hàm số cơ bản

b) y = frac{x-3}{1-x}.

1. Tập xác định: D=mathbb{R} setminus left { 1 right }

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y'=-frac{2}{left(1-xright)^2}. Vì y‘ < 0 nên hàm số nghịch biến trên mỗi khoảng (– ∞; 1) và (1; + ∞).

  • Tiệm cận:

Ta có: lim_{x rightarrow +infty} y = lim_{x rightarrow +infty} frac{x-3}{1-x}  =-1;lim_{x rightarrow -infty} y = lim_{x rightarrow -infty} frac{x-3}{1-x}  = - 1. Suy ra đường thẳng y = – 1 là tiệm cận ngang của đồ thị hàm số.

Ta có: lim_{x rightarrow 1^+} y = lim_{x rightarrow 1^+} frac{x-3}{1-x} =+infty ;lim_{x rightarrow 1^-} y = lim_{x rightarrow 1^-} frac{x-3}{1-x}  =-infty. Suy ra đường thẳng x =1 là tiệm cận đứng của đồ thị hàm số.

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Khi x = 0 thì y = – 3 nên (0; – 3) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ frac{x-3}{1-x} =0

⇔ x = 3.

Vậy đồ thị của hàm số giao với trục Ox tại điểm (3; 0).

Tâm đối xứng của đồ thị hàm số là điểm I(1; – 1).

Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = – 1.

Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bài 4

Khảo sát và vẽ đồ thị của các hàm số sau:

a) y = frac{{{x^2} - 2x + 2}}{{x - 1}}

b) y = 2x - frac{1}{{1 - 2x}}

Hướng dẫn giải:

a)y = frac{{{x^2} - 2x + 2}}{{x - 1}}

1. Tập xác định: D=mathbb{R} setminus left {  1 right }

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y'= frac{ x^2-2x }{(x-1)^2}. Ta có y’ = 0 ⇔ x = 0 hoặc x = 2.

Trên các khoảng (0; 1) và (1; 2), y’ < 0 nên hàm số nghịch biến trên mỗi khoảng đó.

Trên các khoảng (-infty ;0) và (2; +infty ), y’ > 0 nên hàm số đồng biến trên mỗi khoảng đó.

  • Các giới hạn tại vô cực, giới hạn vô cực và tiệm cận:
Khám Phá Thêm:   Tổng hợp code Jujutsu Tycoon và cách nhập

lim_{x rightarrow -infty} y = lim_{x rightarrow -infty}  frac{{{x^2} - 2x + 2}}{{x - 1}}   = -infty ;lim_{x rightarrow +infty} y = lim_{x rightarrow +infty}  frac{{{x^2} - 2x + 2}}{{x - 1}} = +infty

Ta có: a=lim_{x rightarrow +infty } frac{{{x^2} - 2x + 2}}{{x^2 - x}}    =  1 và b=  lim_{x rightarrow +infty } left (frac{{{x^2} - 2x + 2}}{{x - 1}}  -xright )   = -1

Suy ra đường thẳng y = x – 1 là tiệm cận xiên của đồ thị hàm số.

Ta có: lim_{x rightarrow  1^+} y = lim_{x rightarrow  1^+}frac{{{x^2} - 2x + 2}}{{x - 1}}   =+infty ;lim_{x rightarrow  1^-} y = lim_{x rightarrow 1^-} frac{{{x^2} - 2x + 2}}{{x - 1}}   =-infty. Suy ra đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Đồ thị hàm số giao với trục Oy tại (0; – 2).

Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).

Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = x – 1.

Khảo sát và vẽ đồ thị một số hàm số cơ bản

b)y = 2x - frac{1}{{1 - 2x}}

1. Tập xác định: D=mathbb{R} setminus left { frac{1}{2}  right }

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y'= 2-frac{2}{(1-2x)^2}. Ta có y’ = 0 ⇔ x = 0 hoặc x = 1.

Trên các khoảng (0; frac{1}{2}) và (frac{1}{2}; 1), y’ < 0 nên hàm số nghịch biến trên mỗi khoảng đó.

Trên các khoảng (-infty ;0) và (1; +infty ), y’ > 0 nên hàm số đồng biến trên mỗi khoảng đó.

  • Các giới hạn tại vô cực, giới hạn vô cực và tiệm cận:

lim_{x rightarrow -infty} y = lim_{x rightarrow -infty}  left ( 2x - frac{1}{{1 - 2x}}  right )    = -infty ;lim_{x rightarrow +infty} y = lim_{x rightarrow +infty}  left (2x - frac{1}{{1 - 2x}} right )  = +infty

Ta có: a=lim_{x rightarrow +infty } left (2  - frac{1}{{x - 2x^2}}  right )     = 2 và b=  lim_{x rightarrow +infty } left (2x - frac{1}{{1 - 2x}}   -2xright )   = 0

Suy ra đường thẳng y = 2x là tiệm cận xiên của đồ thị hàm số.

Ta có: lim_{x rightarrow  frac{1}{2} ^+} y = lim_{x rightarrow  frac{1}{2} ^+} left ( 2x - frac{1}{{1 - 2x}}  right )   =+infty ;lim_{x rightarrow  frac{1}{2} ^-} y = lim_{x rightarrow frac{1}{2} ^-} left ( 2x - frac{1}{{1 - 2x}} right )   =-infty. Suy ra đường thẳng x=frac{1}{2} là tiệm cận đứng của đồ thị hàm số.

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Đồ thị hàm số giao với trục Oy tại (0; – 1).

Tâm đối xứng của đồ thị hàm số là điểm Ileft(frac{1}{2};1right).

Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x=frac{1}{2} và y = 2x.

Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bài 5

Cho hàm số: y = frac{{ - {x^2} + 3x + 1}}{{x + 2}}

a) Khảo sát và vẽ đồ thị của hàm số đã cho.

b) Tìm toạ độ trung điểm đoạn nối hai điểm cực trị của đồ thị hàm số. Có nhận xét gì về điểm này?

Hướng dẫn giải:

a) y = frac{{ - {x^2} + 3x + 1}}{{x + 2}}

1. Tập xác định: D=mathbb{R} setminus left {  -2 right }

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y'= frac{ -x^2-4x+5 }{(x+2)^2}. Ta có y’ = 0 ⇔ x = – 5 hoặc x = 1.

Trên các khoảng (-infty ;-5) và (1; +infty ), y’ < 0 nên hàm số nghịch biến trên mỗi khoảng đó.

Trên các khoảng (-5;-2) và (-2; 1 ), y’ > 0 nên hàm số đồng biến trên mỗi khoảng đó.

  • Cực trị:

Hàm số đạt cực tiểu tại x = – 5 và yCT = 13

Hàm số đạt cực đại tại x = 1 và yCĐ = 1

  • Các giới hạn tại vô cực, giới hạn vô cực và tiệm cận:

lim_{x rightarrow -infty} y = lim_{x rightarrow -infty}  frac{{ - {x^2} + 3x + 1}}{{x + 2}}   = +infty ;lim_{x rightarrow +infty} y = lim_{x rightarrow +infty}   frac{{ - {x^2} + 3x + 1}}{{x + 2}}  = -infty

Ta có: a=lim_{x rightarrow +infty }  frac{{ - {x^2} + 3x + 1}}{{x^2 + 2x}}     = - 1 và b=  lim_{x rightarrow +infty } left ( frac{{ - {x^2} + 3x + 1}}{{x + 2}}   +xright )   = 5

Suy ra đường thẳng y = – x + 5 là tiệm cận xiên của đồ thị hàm số.

Ta có: lim_{x rightarrow  -2^+} y = lim_{x rightarrow  -2^+} frac{{ - {x^2} + 3x + 1}}{{x + 2}}   =-infty ;lim_{x rightarrow -2^-} y = lim_{x rightarrow -2^-} frac{{ - {x^2} + 3x + 1}}{{x + 2}}   =+infty. Suy ra đường thẳng x = – 2 là tiệm cận đứng của đồ thị hàm số.

  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Ta có y = 0 ⇔ frac{{ - {x^2} + 3x + 1}}{{x + 2}} =0

⇔ x=frac{3+sqrt{13}}{2} hoặc x=frac{3-sqrt{13}}{2}

Vậy đồ thị của hàm số giao với trục Ox tại hai điểm left( frac{3+sqrt{13}}{2} ;0right) và left(frac{3-sqrt{13}}{2};0right).

Đồ thị hàm số giao với trục Oy tại left(0;frac{1}{2}right).

Tâm đối xứng của đồ thị hàm số là điểm I(- 2; 7).

Khám Phá Thêm:   Lời bài hát Em chào tết

Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = – 2 và y = – x + 5.

Khảo sát và vẽ đồ thị một số hàm số cơ bản

b) (-2; 7) là tọa độ trung điểm đoạn nối hai điểm cực trị của đồ thị hàm số.

Tâm đối xứng của đồ thị hàm số chính là trung điểm đoạn nối hai điểm cực trị của đồ thị hàm số.

Bài 6

Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6 dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông nhỏ ở bốn góc của tấm bìa (Hình 11).

Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bạn Việt muốn tìm độ dài cạnh hình vuông cần cắt bỏ để chiếc hộp đạt thể tích lớn nhất.

a) Hãy thiết lập hàm số biểu thị thể tích hộp theo x với x là độ dài cạnh hình vuông cần cắt đi.

b) Khảo sát và vẽ đồ thị hàm số tìm được.

Từ đó, hãy tư vấn cho bạn Việt cách giải quyết vấn đề và giải thích vì sao cần chọn giá trị này. (Làm tròn kết quả đến hàng phần mười.)

Hướng dẫn giải:

a) Cạnh của đáy hộp là: 6 – 2x (dm)

Hàm số biểu thị thể tích hộp với cạnh đáy 6 – 2x (dm) và chiều cao h = x (dm) là:

V(x) = (6 – 2x)2 . x = 4x3 – 24x2 + 36x

b) Xét hàm số y = V(x) = 4x3 – 24x2 + 36x

1. Tập xác định: (0; 3)

2. Sự biến thiên:

  • Chiều biến thiên:

Đạo hàm y’ = 12x2 – 48x + 36. Ta có y’ = 0 ⇔ x = 1 hoặc x = 3.

Trên khoảng (1; 3), y’ < 0 nên hàm số nghịch biến trên mỗi khoảng đó.

Trên khoảng (0; 1), y’ > 0 nên hàm số đồng biến trên mỗi khoảng đó.

  • Cực trị: Hàm số đạt cực đại tại x = 1 và yCĐ = 16.
  • Bảng biến thiên:

Khảo sát và vẽ đồ thị một số hàm số cơ bản

3. Đồ thị

Ta có y = 0 ⇔ 4x3 – 24x2 + 36x = 0

⇔ x = 0 hoặc x = 3

Vậy đồ thị của hàm số giao với trục Ox tại hai điểm (0; 0) và (3; 0)

Đồ thị hàm số giao với trục Oy tại (0; 0).

Tâm đối xứng của đồ thị hàm số là điểm I(2; 8).

Khảo sát và vẽ đồ thị một số hàm số cơ bản

Vậy Việt nên cắt đi 4 hình vuông ở góc có cạnh bằng 1dm để thể tích của hộp đạt lớn nhất là 16 dm3.

Cảm ơn bạn đã xem bài viết Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Giải Toán 12 Chân trời sáng tạo trang 25 → 36 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Toán 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số Giải Toán 12 Chân trời sáng tạo trang 14, 15, 16, 17, 18
Next Post: Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số Giải Toán 12 Chân trời sáng tạo trang 6 → 13 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích