Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số Giải Toán 12 Chân trời sáng tạo trang 6 → 13

Tháng 7 16, 2024 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số Giải Toán 12 Chân trời sáng tạo trang 6 → 13 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số là tài liệu vô cùng hữu ích giúp các em học sinh có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 12 Chân trời sáng tạo tập 1 trang 6, 7, 8, 9, 10, 11, 12, 13.

Giải bài tập Toán 12 Chân trời sáng tạo tập 1 Bài 1 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 1 Chương I: Ứng dụng đạo hàm để khảo sát hàm số. Mời thầy cô và các em theo dõi bài viết dưới đây của thcshuynhphuoc-np.edu.vn:

Mục Lục Bài Viết

  • Giải Toán 12 Chân trời sáng tạo Tập 1 trang 13
    • Bài 1
    • Bài 2
    • Bài 3
    • Bài 4
    • Bài 5
    • Bài 6
    • Bài 7

Giải Toán 12 Chân trời sáng tạo Tập 1 trang 13

Bài 1

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 11.

Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số Giải Toán 12 Chân trời sáng tạo trang 6 → 13

Hướng dẫn giải:

a) Hình 11a:

Hàm số đồng biến trên các khoảng left(-1; 2right) và (4;5); nghịch biến trên các khoảng left(-1; 0right) và (2;4)

Hàm số đạt cực đại tại x = 2, giá trị cực đại là f(2) = 2; hàm số đạt cực tiểu tại x = 0 và x = 4, giá trị cực tiểu là f(0) = – 1 và f(4) = – 1.

Khám Phá Thêm:   Tình huống truyện Làng (4 mẫu) Truyện ngắn Làng của Kim Lân

b) Hình 11b:

Hàm số đồng biến trên các khoảng left(-3; -1right) và (1;3); nghịch biến trên khoảng left(-1; 1right)

Hàm số đạt cực đại tại x = – 1, giá trị cực đại là f(- 1) = 3; hàm số đạt cực tiểu tại x = 1, giá trị cực tiểu là f(1) = – 1.

Bài 2

Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau:

a) y = 4x3 + 3x2 – 36x + 6;

b) y = frac{x^{2}-2x-7 }{x-4}

Hướng dẫn giải:

a) y = 4x3 + 3x2 – 36x + 6

Tập xác định của hàm số là ℝ.

Ta có: y’ = 12x2 + 6x – 36

y’ = 0 Leftrightarrow x = – 2 hoặc x=frac{3}{2}.

Lập bảng biến thiên của hàm số:

Tính đơn điệu và cực trị của hàm số

Hàm số đồng biến trên các khoảng left(-∞;-2right) và left(frac{3}{2} ;+∞right), nghịch biến trên khoảng left(-2;frac{3}{2}right)

Hàm số đạt cực đại tại x = – 2, giá trị cực đại là f(- 2) = 58; hàm số đạt cực tiểu tại x=frac{3}{2}, giá trị cực tiểu là fleft(frac{3}{2}right)=-frac{111}{4}

b) y = frac{x^{2}-2x-7 }{x-4}

Tập xác định của hàm số là ℝ {4}.

Ta có: y'=frac{x^2-8x+15}{left(x-4right)^2}

y’ = 0 Leftrightarrow x = 4 hoặc x = 5.

Lập bảng biến thiên của hàm số:

Tính đơn điệu và cực trị của hàm số

Hàm số đồng biến trên các khoảng left(-∞;3right) và left(5 ;+∞right), nghịch biến trên các khoảng left(3;4right) và (4;5)

Hàm số đạt cực đại tại x = 3, giá trị cực đại là f(3) = 4; hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là f(5) = 8.

Bài 3

Tìm cực trị của các hàm số sau:

a) y = 2x3 + 3x2 – 36x + 1;

b) y = frac{x^{2} -8x+10}{x-2}

c) y = sqrt{-x^{2} +4}

Hướng dẫn giải:

a) y = 2x3 + 3x2 – 36x + 1

Tập xác định của hàm số là ℝ.

Ta có: y’ = 6x2 + 6x – 36

y’ = 0 Leftrightarrow x = – 3 hoặc x = 2.

Lập bảng biến thiên của hàm số:

Tính đơn điệu và cực trị của hàm số

Hàm số đạt cực đại tại x = – 3, giá trị cực đại là f(- 3) = 82; hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = – 43.

Khám Phá Thêm:   Tập làm văn lớp 4: Tả cây bút chì của em Dàn ý & 21 bài văn Tả bút chì lớp 4 hay nhất

b) y = frac{x^{2} -8x+10}{x-2}

Tập xác định của hàm số là ℝ {2}.

Ta có: y'=frac{x^2-4x+6}{left(x-2right)^2} >0 với mọi x khác 2.

Lập bảng biến thiên của hàm số:

Tính đơn điệu và cực trị của hàm số

Hàm số không có cực trị.

c) y = sqrt{-x^{2} +4}

Tập xác định của hàm số là [- 2; 2]

Ta có: y'=-frac{x}{sqrt{-x^2+4}}; y’ = 0 Leftrightarrow x = 0

Lập bảng biến thiên của hàm số:

Tính đơn điệu và cực trị của hàm số

Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

Bài 4

Chứng minh rằng hàm số y = frac{2x+1}{x-3} nghịch biến trên từng khoảng xác định của nó.

Hướng dẫn giải:

Xét hàm số y = frac{2x+1}{x-3}

Tập xác định: ℝ {3}.

Ta có: y'=frac{-7}{left(x-3right)^2} <0 với mọi x khác 3.

Lập bảng biến thiên của hàm số:

Tính đơn điệu và cực trị của hàm số

Vậy hàm số y = frac{2x+1}{x-3} nghịch biến trên từng khoảng xác định của nó.

Bài 5

Kim ngạch xuất khẩu rau quả của Việt Nam trong các năm từ 2010 và 2017 có thể được tính xấp xỉ bằng công thức f(x) = 0,01x3 – 0,04x2 + 0,25x + 0,44 (tỉ USD) với x là số năm tính từ 2010 đến 2017 (0 ≤ x ≤ 7).

a) Tính đạo hàm của hàm số y = f(x).

b) Chứng minh rằng kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.

Hướng dẫn giải:

a) Ta có: f'(x) = 0,03x2 – 0,08x + 0,25

b) Tập xác định: ℝ

Ta có: f'(x) > 0 với mọi x thuộc ℝ nên f(x) đồng biến trên ℝ.

Do đó kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.

Bài 6

Xét một chất điểm chuyển động dọc theo trục Ox. Tọa độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t) = t3 – 6t2 + 9t với t ≥ 0. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).

Khám Phá Thêm:   Toán lớp 5: Luyện tập trang 70 Giải Toán lớp 5 trang 70

a) Tìm các hàm v(t) và a(t).

b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

Hướng dẫn giải:

a) Ta có:

v(t) = x'(t) = 3t2 – 12t + 9

a(t) = v'(t) = 6t – 12

b) a(t) = v'(t) ⇔ t = 2

Ta có a(t) < 0 với mọi t ∈ (0; 2) và a(t) > 0 với mọi t > 2

Vậy vận tốc của chất điểm giảm khi t ∈ (0; 2) và tăng khi t ∈ (2; +∞).

Bài 7

Đạo hàm f'(x) của hàm số y = f(x) có đồ thị như Hình 12. Xét tính đơn điệu và tìm điểm cực trị của hàm số y = f(x).

Tính đơn điệu và cực trị của hàm số

Hướng dẫn giải:

Ta có f'(x) > 0 trên các khoảng (-1; 2) và (4;5) nên f(x) đồng biến trên từng khoảng đó.

f'(x) < 0 trên các khoảng (-2; 1) và (2;4) nên f(x) nghịch biến trên từng khoảng đó.

Hàm số y = f(x):

Điểm cực đại tại x = 2 vì f'(x) đổi dấu dương sang âm khi x đi qua x = 2.

Điểm cực tiểu tại x = – 1 và x = 4 vì f'(x) đổi dấu âm sang dương khi x đi qua x = -1 và x= 4

Cảm ơn bạn đã xem bài viết Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số Giải Toán 12 Chân trời sáng tạo trang 6 → 13 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Giải Toán 12 Chân trời sáng tạo trang 25 → 36
Next Post: Bộ đề đọc hiểu Ngữ văn 9 Chân trời sáng tạo Bộ đề đọc hiểu Ngữ văn 9 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích