Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Toán 10: Bài tập cuối chương II – Cánh diều Giải SGK Toán 10 trang 30 – Tập 1

Tháng 1 5, 2024 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Toán 10: Bài tập cuối chương II – Cánh diều Giải SGK Toán 10 trang 30 – Tập 1 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Bài tập cuối chương 2 Toán 10 Cánh diều giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các bài tập trong SGK Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn.

Giải Toán 10 Cánh diều trang30 Tập 1 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa. Giải Bài tập cuối chương 2 Toán 10 Cánh diều là tài liệu cực kì hữu ích hỗ trợ các em học sinh lớp 10 trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Mục Lục Bài Viết

  • Giải SGK Toán 10 trang 30 – Tập 1
    • Bài 1 trang 30
    • Bài 2 trang 30
    • Bài 3 trang 30
    • Bài 4 trang 30
    • Bài 5 trang 30

Giải SGK Toán 10 trang 30 – Tập 1

Bài 1 trang 30

Đề bài

Biểu diễn miền nghiệm của bất phương trình:

a) 3x – y > 3

Toán 10: Bài tập cuối chương II – Cánh diều Giải SGK Toán 10 trang 30 – Tập 1

c) y ge 2x - 5

Phương pháp giải 

Các bước biểu diễn miền nghiệm của bất phương trình ax + by < c trong mặt phẳng tọa độ Oxy:

+ Bước 1: Vẽ đường thẳng d:ax + by = c. Đường thẳng d chia mặt phẳng tọa độ thành hai nửa mặt phẳng.

+ Bước 2: Lấy một điểm Mleft( {{x_0};{y_0}} right) không nằm trên d (ta thường lấy gốc tọa độ O nếu c ne 0). Tính a{x_0} + b{y_0} và so sánh với c.

+ Bước 3: Kết luận:

Nếu a{x_0} + b{y_0} < c thì nửa mặt phẳng (không kể d) chứa điểm M là miền nghiệm của bất phương trình ax + by < c.

Nếu a{x_0} + b{y_0} > c thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình ax + by < c.

Gợi ý đáp án

a) 3x – y > 3

Bước 1: Vẽ đường thẳng 3x - y = 3 Leftrightarrow y = 3x - 3 (nét đứt)

Bước 2: Thay tọa độ O(0;0) vào bất phương trình ta được:

3x - y > 3 Leftrightarrow 3.0 - 0 > 3  (Vô lí)

=> O không nằm trong miền nghiệm của bất phương trình.

Vậy ta gạch phần chứa O.

Toán 10: Bài tập cuối chương II – Cánh diều Giải SGK Toán 10 trang 30 – Tập 1

Bước 1: Vẽ đường thẳng x + 2y = - 4 Leftrightarrow y = - frac{1}{2}x - 2 (nét liền)

Bước 2: Thay tọa độ O(0;0) vào bất phương trình ta được:

x + 2y le - 4 Leftrightarrow 0 + 2.0 le - 4 (Vô lí)

=> O không nằm trong miền nghiệm của bất phương trình.

Khám Phá Thêm:   Giáo án dạy thêm môn Toán lớp 9 năm 2023 - 2024 Giáo án dạy thêm Toán 9

Vậy ta gạch phần chứa O.

c) y ge 2x - 5

Bước 1: Vẽ đường thẳng y = 2x – 5(nét liền)

Bước 2: Thay tọa độ O(0;0) vào bất phương trình ta được:

y ge 2x - 5 Leftrightarrow 0 ge 2.0 - 5 (Luôn đúng)

=> O nằm trong miền nghiệm của bất phương trình.

Vậy ta gạch phần không chứa O.

Bài 2 trang 30

Biểu diễn miền nghiệm của hệ bất phương trình:

a) left{ begin{array}{l}2x - 3y < 6\2x + y < 2end{array} right.

b) left{ begin{array}{l}4x + 10y le 20\x - y le 4\x ge - 2end{array} right.

c) left{ begin{array}{l}x - 2y le 5\x + y ge 2\x ge 0\y le 3end{array} right.

Phương pháp giải 

Bước 1: Vẽ các đường thẳng.

Bước 2: Tìm miền nghiệm của các bất phương trình.

Bước 3: Phần không bị gạch chung của các miền nghiệm là miền nghiệm của hệ bất phương trình.

Gợi ý đáp án

a) Vẽ các đường thẳng 2x – 3y = 6;2x + y = 2 (nét đứt)

Thay tọa độ điểm O vào các bất phương trình trong hệ.

Ta thấy: 2.0-3.0<6 và 2.0+0<2

=> O thuộc miền nghiệm của cả 2 bất phương trình

Miền nghiệm:

b)

Vẽ các đường thẳng

4x + 10y le 20 Leftrightarrow y = - frac{2}{5}x + 2 (nét liền)

x - y = 4 Leftrightarrow y = x - 4 (nét liền)

x = – 2 (nét liền)

Thay tọa độ điểm O vào các bất phương trình trong hệ.

Ta thấy: 4.0+10.0<20 và 0-0<4 và 0>-2

=> O thuộc miền nghiệm của cả 3 bất phương trình

Miền nghiệm:

c)

Vẽ các đường thẳng

x - 2y = 5 Leftrightarrow y = frac{1}{2}x - 5 (nét liền)

x + y = 2 Leftrightarrow y = - x + 2 (nét liền)

y = 3 (nét liền)

Và trục Oy

Thay tọa độ O vào bất phương trình x - 2y le 5

=> O thuộc miền nghiệm của bất phương trình trên.

Thay tọa độ O vào x + y ge 2

=> O không thuộc miền nghiệm của bất phương trình trên

Lấy phần bên phải trục Oy và bên dưới đường thẳng y=3

Miền nghiệm:

Bài 3 trang 30

Nhu cầu canxi tối thiểu cho một người đang độ tuổi trưởng thành trong một ngày là 1300 mg. trong 1 lạng đậu nành có 165 mg canxi, 1 lạng thịt có 15 mg canxi.

Gọi x,y lần lượt là số lạng đậu nành và số lạng thịt mà một người đang độ tuổi trưởng thành ăn trong một ngày

a) Viết bất phương trình bậc nhất hai ẩn x,y để biểu diễn lượng canxi cần thiết trong một ngày của một người trong độ tuổi trưởng thành.

b) Chỉ ra một nghiệm left( {{x_0};{y_0}} right) với {x_0},{y_0} in mathbb{Z} của bất phương trình đó.

Hướng dẫn:

a) Đọc kỹ đề bài để tìm ra bất phương trình bậc nhất hai ẩn thích hợp.

Lưu ý: sử dụng dấu “≥” để biểu diễn từ “tối thiểu”.

b) Cho bất phương trình bậc nhất hai ẩn ax + by < c(*)

Khám Phá Thêm:   Viết bưu thiếp về kỳ nghỉ ở một thành phố bằng tiếng Anh (4 mẫu) Viết Postcard bằng Tiếng Anh lớp 6

Mỗi cặp số left( {{x_0};{y_0}} right) sao cho a{x_0} + b{y_0} < c được gọi là một nghiệm của bất phương trình (*).

Gợi ý đáp án

a)

Lượng canxi có trong x lạng đậu nành là 165x (mg)

Lượng canxi có trong y lạng thịt là 15y (mg)

Bất phương trình là 165x + 15y ge 1300

b) Thay cặp số (10;10) vào bất phương trình ta được:

165.10 + 15.10 = 1650 + 150 = 1800 > 1300

Vậy (10;10) là một nghiệm của bất phương trình.

Bài 4 trang 30

Bác Ngọc thực hiện chế độ ăn kiêng với yêu cầu tối thiểu hằng ngày qua thức uống là 300 ca-lo, 36 đơn vị vitamin A và 90 đơn vị vitamin C. Một cốc đồ uống ăn kiêng thứ nhất cung cấp 60 ca-lo, 12 đơn vị vitamin A và 10 đơn vị vitamin C. Một cốc đổ uống ăn kiêng thứ hai cung cấp 60 ca-lo, 6 đơn vị vitamin A và 30 đơn vị vitamin C.

a) Viết hệ bất phương trình mô tả số lượng cốc cho đồ uống thứ nhất và thứ hai mà bác Ngọc nên uống mỗi ngày để đáp ứng nhu cầu cần thiết đối với số ca-lo và số đơn vị vitamin hấp thụ.

b) Chỉ ra hai phương án mà bác Ngọc có thể chọn lựa số lượng cốc cho đồ uống thứ nhất và thứ hai nhằm đáp ứng nhu cầu cần thiết đối với số ca-lo và số đơn vị vitamin hấp thụ.

Hướng dẫn:

a) Đọc kỹ đề bài để tìm ra hệ bất phương trình bậc nhất hai ẩn thích hợp.

Lưu ý: sử dụng dấu “≥” để biểu diễn từ “tối thiểu”.

b) + Hệ bất phương trình bậc nhất hai ẩn x,y là một hệ gồm một số bất phương trình bậc nhất hai ẩn x,y. Mỗi nghiệm chung của các bất phương trình trong hệ được gọi là một nghiệm của hệ bất phương trình đó.

+ Cho bất phương trình bậc nhất hai ẩn ax + by < c(*)

Mỗi cặp số left( {{x_0};{y_0}} right) sao cho a{x_0} + b{y_0} < c được gọi là một nghiệm của bất phương trình (*).

Gợi ý đáp án

a) Gọi x, y lần lượt là số lượng cốc cho đồ uống thứ nhất và thứ hai cần tìm.

Lượng calo trong cả 2 đồ uống là: 60x+60y

Lượng vitamin A trong 2 đồ uống là: 12x+6y

Lượng vitamin C trong 2 đồ uống là: 10x+30y

Ta có hệ bất phương trình:

Khám Phá Thêm:   Bản tự kiểm điểm Đảng viên dự bị Bản kiểm điểm Đảng viên dự bị theo Hướng dẫn 12

left{ begin{array}{l}60x + 60y ge 300\12x + 6y ge 36\10x + 30y ge 90end{array} right.

b)

+) Thay cặp số (2;4) vào hệ ta được:

60.2+60.2=360>300

2.12+4.6=48>36

2.10+4.30=140>90

=> (2;4) là một nghiệm của hệ.

+) Thay cặp số (1;5) vào hệ ta được:

1.60+5.60=360>300

1.12+5.6=42>36

1.10+5.30=160>90

=> (1;5) là một nghiệm của hệ.

Vậy hai phương án bác Ngọc có thể chọn là:

Phương án 1: 2 cốc loại 1 và 4 cốc loại 2.

Phương án 2: 1 cốc loại 1 và 5 cốc loại 2.

Bài 5 trang 30

Một chuỗi nhà hàng ăn nhanh bán đồ ăn từ 10h00 sáng đến 22h00 mỗi ngày. Nhân viên phục vụ của nhà hàng làm việc theo hai ca, mỗi ca 8 tiếng, ca I từ 10h00 đến 18h00 và ca II từ 14h00 đến 22h00.

Tiền lương của nhân viên được tính theo giờ (bảng bên).

Để mỗi nhà hàng hoạt động được thì cần tối thiểu 6 nhân viên trong khoảng 10h00 – 18h00, tối thiểu 24 nhân viên trong thời gian cao điểm 14h00 – 18h00 và không quá 20 nhân viên trong khoảng 18h00 – 22h00. Do lượng khách trong khoảng 14h00 – 22h00 thường đông hơn nên nhà hàng cần số nhân viên ca II ít nhất phải gấp đôi số nhân viên ca I. Em hãy giúp chủ chuỗi nhà hàng chỉ ra cách huy động số lượng nhân viên cho mỗi ca sao cho chi phí tiền lương mỗi ngày là ít nhất.

Gợi ý đáp án

Gọi x, y lần lượt là số nhân viên ca I và ca II (x>0,y>0)

Theo giả thiết ta có: left{ begin{array}{l}x ge 6\x + y ge 24\left( {x + y} right) - x le 20\y ge 2xend{array} right.

Biểu diễn tập nghiệm của hệ bất phương trình

Tập nghiệm của bất phương trình giới hạn bởi tứ giác ABCD với:

A(6;20), B(10;20), C(8;16), D(6;18)

Tiền lương mỗi ngày của các nhân viên: T = 20x + 22y(nghìn đồng)

T(6;20)=20.6+20.22=560 (nghìn đồng)

T(10;20)=20.10+22.20=640 (nghìn đồng)

T(8;16)=20.8+22.16=512 (nghìn đồng)

T(6;18)=20.6+22.18=516 (nghìn đồng)

Vậy để tiền lương mỗi ngày ít nhất thì ca I có 8 nhân viên, ca II có 16 nhân viên.

Cảm ơn bạn đã xem bài viết Toán 10: Bài tập cuối chương II – Cánh diều Giải SGK Toán 10 trang 30 – Tập 1 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Đề thi học kì 2 môn Tiếng Anh 10 năm 2023 – 2024 sách Kết nối tri thức với cuộc sống Đề thi tiếng Anh học kì 2 lớp 10 – Global Success (Có ma trận, đáp án)
Next Post: Toán 10 Bài 1: Hàm số và đồ thị Giải SGK Toán 10 trang 37, 38 – Tập 1 sách Cánh diều »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích