Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Tìm m để hệ phương trình có nghiệm duy nhất Ôn tập Toán 9

Tháng 10 10, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Tìm m để hệ phương trình có nghiệm duy nhất Ôn tập Toán 9 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Tìm m để hệ phương trình có nghiệm duy nhất là một trong những dạng toán trọng tâm thường xuất hiện trong các bài kiểm tra, bài thi vào lớp 10 môn Toán.

Cách tìm m để hệ phương trình có nghiệm duy nhất tổng hợp toàn bộ kiến thức về khái niệm, cách giải kèm theo một số ví dụ minh họa. Thông qua tài liệu này giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được kết quả cao trong kì thi vào lớp 10 sắp tới. Bên cạnh đó các bạn xem thêm cách giải hệ phương trình đối xứng loại 1.

Mục Lục Bài Viết

  • 1. Hệ phương trình bậc nhất hai ẩn
  • 2. Cách tìm m để hệ phương trình có nghiệm duy nhất
  • 3. Bài tập tìm m để hệ phương trình có nghiệm duy nhất

1. Hệ phương trình bậc nhất hai ẩn

– Hệ phương trình bậc nhất hai ẩn có dạng: left{ {begin{array}{*{20}{c}}
  {ax + by = c} \ 
  {hx + ky = d} 
end{array}} right.left( * right)

Trong đó x, y là ẩn số, các chữ số a, b, h, k, c, d là các hệ số

– Nếu cặp số (x0; y0) đồng thời là nghiệm của cả hai phương trình của hệ phương trình (*) thì ta gọi (x0; y0) là nghiệm của hệ phương trình (*)

Khám Phá Thêm:   Đáp án Find Out đầy đủ nhất - Game giải đố cực hay

– Giải hệ phương trình (*) ta tìm được tập nghiệm của nó

2. Cách tìm m để hệ phương trình có nghiệm duy nhất

Bước 1: Sử dụng phương pháp thế hoặc cộng đại số để giải hệ phương trình theo ẩn m.

Bước 2: Biện luận chứng minh hệ luôn có nghiệm duy nhất.

Bước 3: Kết luận.

3. Bài tập tìm m để hệ phương trình có nghiệm duy nhất

Ví dụ 1: Cho hệ phương trình left{ {begin{array}{*{20}{c}}
  {left( {m - 1} right)x + y = 2} \ 
  {mx + y = m + 1} 
end{array}} right. với m là tham số.

a) Giải hệ phương trình khi m = 2.

b) Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3

Hướng dẫn giải

a) Giải hệ phương trình khi m = 2

Thay m = 2 vào hệ phương trình ta được:

left{ {begin{array}{*{20}{c}}
  {x + y = 2} \ 
  {2x + y = 3} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {x + y = 2} \ 
  {x = 1} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {y = 1} \ 
  {x = 1} 
end{array}} right.

Vậy khi m = 2 hệ phương trình có nghiệm (x; y) = (1; 1)

b) Rút y từ phương trình thứ nhất ta được

y = 2 – (m – 1)x thế vào phương trình còn lại ta được phương trình:

3m + 2 – (m – 1)x = m + 1

<=> x = m – 1

Suy ra y = 2(m – 1)2 với mọi m

Vậy hệ phương trình luôn có nghiệm duy nhất (x; y) = (m – 1; 2 – (m – 1)2)

2x + y = 2(m – 1) + 2 – (m – 1)2 = -m2 + 4m – 1 = 3 – (m – 2)2 ≤ 3 với mọi giá trị của m.

Ví dụ 2: Cho hệ phương trình: left{ {begin{array}{*{20}{c}}
  {2x + my =  - 4} \ 
  {mx - 3y = 5} 
end{array}} right.

a) Giải hệ phương trình với m = 1

b) Tìm m để hệ phương trình có nghiệm duy nhất.

Hướng dẫn giải

a) Giải hệ phương trình khi m = 1

Thay m = 1 vào hệ phương trình ta được:

Khám Phá Thêm:   Viết thư bày tỏ lòng biết ơn tới người thân đã tạo điều kiện cho em hưởng đầy đủ các quyền trẻ em Thực hiện quyền trẻ em - GDCD 6 Chân trời sáng tạo

left{ {begin{array}{*{20}{c}}
  {2x + y =  - 4} \ 
  {x - 3y = 5} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {6x + 3y =  - 12} \ 
  {x - 3y = 5} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {7x =  - 7} \ 
  {x - 3y = 5} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {x =  - 1} \ 
  {x - 3y = 5} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {x =  - 1} \ 
  {y =  - 2} 
end{array}} right.

Vậy khi m = 1 hệ phương trình có nghiệm (x; y) = (-1; -2)

b) Ta xét hai trường hợp:

Trường hợp 1: Nếu m = 0 hệ phương trình trở thành left{ {begin{array}{*{20}{c}}
  {2x =  - 4} \ 
  { - 3y = 5} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {x =  - 2} \ 
  {y =  - dfrac{5}{3}} 
end{array}} right.

Vậy với m = 0 hệ phương trình có nghiệm duy nhất.

Trường hợp 2: Nếu m ≠ 0 hệ có nghiệm duy nhất khi và chỉ khi frac{2}{m} ne frac{m}{{ - 3}} Leftrightarrow {m^2} ne  - 6 (luôn đúng, vì m2 ≥ 0 với mọi m)

Do đó, với m ≠ 0 hệ luôn có nghiệm duy nhất.

Vậy hệ phương trình đã cho luôn có nghiệm với mọi giá trị của m.

Ví dụ 3: Cho hệ phương trình left{ {begin{array}{*{20}{c}}
  {x + my = m + 1} \ 
  {mx + y = 2m} 
end{array}} right. với m là tham số

a) Giải hệ phương trình khi m = 2.

b) Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn left{ {begin{array}{*{20}{c}}
  {x geqslant 2} \ 
  {y geqslant 1} 
end{array}} right.

Hướng dẫn giải

a) Học sinh tự giải hệ phương trình.

b) Xét hệ left{ {begin{array}{*{20}{c}}
  {x + my = m + 1{text{    }}left( 1 right)} \ 
  {mx + y = 2m{text{      }}left( 2 right)} 
end{array}} right.

Từ (2) suy ra y = 2m – mx thay vào (1) ta được

x + m(2m – mx) = m + 1

<=> 2m2 – m2x + x = m + 1

<=> (1 – m2)x = -2m2 + m + 1

<=> (m2 – 1)x = 2m2 – m – 1 (3)

Hệ phương trình đã cho có nghiệm duy nhất

<=> (3) có nghiệm duy nhất

m2 – 1 ≠ 0 => m ≠ ± 1 (*)

Khi đó hệ đã cho có nghiệm duy nhất là left{ {begin{array}{*{20}{c}}
  {x = dfrac{{2m + 1}}{{m + 1}}} \ 
  {y = dfrac{m}{{m + 1}}} 
end{array}} right.

Cảm ơn bạn đã xem bài viết Tìm m để hệ phương trình có nghiệm duy nhất Ôn tập Toán 9 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn
Khám Phá Thêm:   Bài giảng điện tử môn Khoa học tự nhiên 8 sách Kết nối tri thức với cuộc sống Giáo án PowerPoint KHTN lớp 8 (Cả năm)

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Cách làm gỏi ngó sen tôm thịt ngon tại nhà
Next Post: Các kiểu tóc ngắn xoăn nhẹ đẹp nhất hiện nay 2020 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích