Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

Tháng 10 8, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Tìm m để hàm số đồng biến, nghịch biến trên R là một trong những công thức quan trọng giúp các em lớp 11, lớp 12 cần ghi nhớ để vận dụng tính toán nhanh nhất các bài toán tìm sự đồng biến, nghịch biến và cho ra kết quả chính xác.

Trong kì thi THPT Quốc gia môn Toán thì số lượng công thức cần ghi nhớ là không hề nhỏ. Đối với các bài thi trắc nghiệm, điều cần thiết là các em học sinh cần nắm kiến thức rộng và có phương pháp giải nhanh hiệu quả để có thể ghi điểm nhiều nhất. Bên cạnh tìm m để hàm số đồng biến, nghịch biến trên R các bạn xem thêm bộ đề ôn thi THPT Quốc gia môn Toán, phân dạng câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán.

Mục Lục Bài Viết

  • I. Phương pháp giải tìm m để hàm số đồng biến, nghịch biến trên
  • II. Ví dụ minh họa tìm m để hàm số đồng biến, nghịch biến trên R
  • II. Bài tập tự luyện tìm m để hàm số đồng biến, nghịch biến trên R

I. Phương pháp giải tìm m để hàm số đồng biến, nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

– Định lí: Cho hàm số y=fleft( x right) có đạo hàm trên khoảng left( a,b right):

+ Hàm số y=fleft( x right) đồng biến trên khoảng left( a,b right) khi và chỉ khi f'left( x right)ge 0 với mọi giá trị x thuộc khoảng left( a,b right). Dấu bằng xảy ra tại hữu hạn điểm.

+ Hàm số y=fleft( x right) nghịch biến trên khoảng left( a,b right) khi và chỉ khi f'left( x right)le 0 với mọi giá trị x thuộc khoảng left( a,b right). Dấu bằng xảy ra tại hữu hạn điểm.

– Để giải bài toán này trước tiên chúng ta cần biết rằng điều kiện để hàm số y=f(x) đồng biến trên R thì điều kiện trước tiên hàm số phải xác định trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.

Khám Phá Thêm:   Soạn bài Thực hành tiếng Việt trang 24 Cánh diều Ngữ văn lớp 8 trang 24 sách Cánh diều tập 1

+ Giả sử hàm số y=f(x) xác định và liên tục và có đạo hàm trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng. Khi đó hàm số y=f(x) đơn điệu trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng khi và chỉ khi thỏa mãn hai điều kiện sau:

  • Hàm số y=f(x) xác định trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.
  • Hàm số y=f(x) có đạo hàm không đổi dấu trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.

+ Đối với hàm số đa thức bậc nhất:

  • Hàm số y = ax + b (a ne 0) đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng khi và chỉ khi a > 0.
  • Hàm số y = ax + b (a ne 0) nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng khi và chỉ khi a < 0.

– Đây là dạng bài toán thường gặp đối với hàm số đa thức bậc 3. Nên ta sẽ áp dụng như sau:

Xét hàm số y=a{{x}^{3}}+b{{x}^{2}}+cx+dRightarrow y'=3a{{x}^{2}}+2bx+c

TH1: a=0 (nếu có tham số)

TH2: ane 0

+ Hàm số đồng biến trên mathbb{R}Leftrightarrow left{ begin{matrix}

a>0 \

Delta le 0 \

end{matrix} right.

+ Hàm số nghịch biến trên mathbb{R}Leftrightarrow left{ begin{matrix}

a<0 \

Delta le 0 \

end{matrix} right.

Chú ý: Hàm số đa thức bậc chẵn không thể đơn điệu trên R được.

– Các bước tìm điều kiện của m để hàm số đồng biến, nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

Bước 1. Tìm tập xác định Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.

Bước 2. Tính đạo hàm y’ = f’(x).

Bước 3. Biện luận giá trị m theo bảng quy tắc.

Bước 4. Kết luận giá trị m thỏa mãn.

II. Ví dụ minh họa tìm m để hàm số đồng biến, nghịch biến trên R

Ví dụ 1: Cho hàm số y=-frac{1}{3}{{x}^{3}}+m{{x}^{2}}+left( 3m-2 right)x+1. Tìm tất cả giá trị của m để hàm số nghịch biến trên mathbb{R}.

A. left( -2,-1 right) B. left[ -2,-1 right]
C.left( -infty ,-2 right)cup left( -1,+infty right) D. left( -infty ,-2 right]cup left[ -1,+infty right)

Hướng dẫn giải

Ta có: y'=-{{x}^{2}}+2mx+3m-2

Hàm số nghịch biến trên mathbb{R}Leftrightarrow left{ begin{matrix}

a<0 \

Delta le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

-1<0 \

4{{m}^{2}}-4left( 3m-2 right)le 0 \

end{matrix}Leftrightarrow {{m}^{2}}-3m+2le 0 right.Leftrightarrow min left[ -2,-1 right]

Đáp án B

Ví dụ 2: Cho hàm số y=frac{1}{3}left( m-1 right){{x}^{3}}-left( m-1 right){{x}^{2}}-x+1. Tìm m để hàm số nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.

A. -3le mle 1 B. 0le mle 1
C.left( 0,1 right] D. left[ 0,1 right)

Hướng dẫn giải

Ta có: y'=left( m-1 right){{x}^{2}}-2left( m-1 right)x-1

TH1: m-1=0Rightarrow m=1Rightarrow y'=-1<0. Hàm số nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

TH2: mne 1. Hàm số nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng khi:

left{ begin{matrix}

a<0 \

Delta 'le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

m<1 \

{{left( m-1 right)}^{2}}+left( m-1 right)le 0 \

end{matrix}Leftrightarrow left{ begin{matrix}

m<1 \

{{m}^{2}}-mle 0 \

end{matrix} right. right.Leftrightarrow min left[ 0,1 right)

Đáp án D

Ví dụ 3: Tìm m để hàm số y={{x}^{3}}+2left( m+1 right){{x}^{2}}-3mx+5m-2 đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.

A. -4le mle -frac{1}{4} B. -4< m< -frac{1}{4}
C.left[ begin{matrix}

m<-4 \

m>-frac{1}{4} \

end{matrix} right. D. left[ begin{matrix}

mle -4 \

mge -dfrac{1}{4} \

end{matrix} right.

Hướng dẫn giải

y'=3{{x}^{2}}+4left( m+1 right)x-3m

Để hàm số đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng thì:

left{ begin{matrix}

a>0 \

Delta 'le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

1>0 \

4{{left( m+1 right)}^{2}}+9m \

end{matrix}Leftrightarrow min left[ -4,-frac{1}{4} right] right.

Đáp án A

Ví dụ 4: Cho hàm số y=frac{1-m}{3}{{x}^{3}}-2left( 2-m right){{x}^{2}}+2left( 2-m right)x+5. Tìm tất cả giá trị của m sao cho hàm số luôn nghịch biến.

Hướng dẫn giải

Tập xác định: D=mathbb{R}

Tính đạo hàm: y'=left( 1-m right){{x}^{2}}-4left( 2-m right)x+4-2m

TH1: Với m = 1 ta có y'=-4x+2le 0Leftrightarrow xge frac{1}{2}

Vậy m = 1 không thỏa mãn điều kiện đề bài.

Khám Phá Thêm:   Cách khắc phục màn hình đen khi chơi Palworld

TH2: Với mne 1 ta có:

Hàm số luôn nghịch biến Leftrightarrow left{ begin{matrix}

1-m<0 \

2{{m}^{2}}-10m+12le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

m>1 \

2le mle 3 \

end{matrix}Leftrightarrow right.2le mle 3

Ví dụ 5: Tìm m để hàm số y=frac{1}{3}left( m+3 right){{x}^{3}}-2{{x}^{2}}+mx nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

Hướng dẫn giải

Tập xác định: D=mathbb{R}

Đạo hàm: y'=left( m+3 right){{x}^{2}}-4x+m

TH1: Với m = -3 Rightarrow y'=-4x-3Rightarrow m=-3(thỏa mãn)

Vậy m = -3 hàm số nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

TH2: Với mne -3

Hàm số nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng khi y'le 0,forall x

begin{align}

& Rightarrow left( m+3 right){{x}^{2}}-4x+mle 0,forall xRightarrow left{ begin{matrix}

m+3<0 \

-{{m}^{2}}-3m+4le 0 \

end{matrix} right. \

& Leftrightarrow mle -4 \

end{align}

Ví dụ 6:

Tìm tất cả các giá trị của tham số m để hàm số y = frac{1}{3}left( {{m^2} - 2m} right){x^3} + m{x^2} + 3x đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

A. m < 0

B. left[ {begin{array}{*{20}{c}}
  {m < 0} \ 
  {m geqslant 3} 
end{array}} right.

C. left[ {begin{array}{*{20}{c}}
  {m leqslant 0} \ 
  {m geqslant 3} 
end{array}} right.

D. 1 < m ≤ 3

Gợi ý đáp án 

Ta có: y’ = (m2 – 2m).x2 + 2mx + 3

Trường hợp 1: m2 – 2m = 0 => m = 0 hoặc m = 2

Với m = 0, y’ = 3

=> y’ > 0 với mọi x

Do đó m = 0 thỏa mãn hàm số đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

Với m = 2, y’ = 4x + 3

=> m = 0 không thỏa mãn hàm số đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

Trường hợp 2: m2 – 2m ≠ 0 => m ≠ 0 hoặc m ≠ 2

Hàm số đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng khi và chỉ khi

begin{matrix}
  left{ {begin{array}{*{20}{c}}
  {{m^2} - 2m > 0} \ 
  {Delta ' = {m^2} - 3left( {{m^2} - 2m} right) leqslant 0} 
end{array}} right. hfill \
   Leftrightarrow left{ {begin{array}{*{20}{c}}
  {{m^2} - 2m > 0} \ 
  { - 2{m^2} + 6m leqslant 0} 
end{array}} right. Leftrightarrow left{ {begin{array}{*{20}{c}}
  {left[ {begin{array}{*{20}{c}}
  {m > 2} \ 
  {m < 0} 
end{array}} right.} \ 
  {left[ {begin{array}{*{20}{c}}
  {m geqslant 3} \ 
  {m leqslant 0} 
end{array}} right.} 
end{array}} right. Leftrightarrow left[ {begin{array}{*{20}{c}}
  {m geqslant 3} \ 
  {m < 0} 
end{array}} right. hfill \ 
end{matrix}

Vậy left[ {begin{array}{*{20}{c}}
  {m < 0} \ 
  {m geqslant 3} 
end{array}} right. thỏa mãn yêu cầu bài toán đề ra.

Chọn đáp án B

Ví dụ 2: Tập tất cả các giá trị của tham số m để hàm số y = {x^3} - 3m{x^2} + 3x + 1 đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng là:

A. m ∈ [-1; 1]

B. m ∈ (-∞; -1] ∪ [1; +∞)

C. m ∈ (-∞; -1) ∪ (1; +∞)

D. m ∈ (-1; 1)

Gợi ý đáp án

Ta có: y’ = 3x2 – 6mx + 3

Hàm số đồng biến trên khi và chỉ khi

begin{matrix}
  y' geqslant 0,forall x in mathbb{R} hfill \
   Leftrightarrow left{ {begin{array}{*{20}{c}}
  {3 > 0} \ 
  {{{left( { - 3m} right)}^2} - 9 leqslant 0} 
end{array}} right. Leftrightarrow 9{m^2} - 9 leqslant 0 Leftrightarrow m in left[ { - 1;1} right] hfill \ 
end{matrix}

Vậy m ∈ [-1; 1] thỏa mãn yêu cầu bài toán.

Chọn đáp án A

II. Bài tập tự luyện tìm m để hàm số đồng biến, nghịch biến trên R

Câu 1: Hàm số nào đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng?

A. fleft( x right)={{x}^{4}}-4{{x}^{2}}+4 B. fleft( x right)={{x}^{3}}+3{{x}^{2}}+10x+2
C.fleft( x right)=-frac{4}{5}{{x}^{5}}+frac{4}{3}{{x}^{3}}-x D. fleft( x right)={{x}^{3}}+10x-{{cos }^{2}}x

Câu 2: Cho hàm số y=a{{x}^{3}}+b{{x}^{2}}+cx+d. Hỏi hàm số đồng biến trên khi nào?

A. left[ begin{matrix}

a=b=c=0 \

a<0,{{b}^{2}}-3ac<0 \

end{matrix} right. B. left[ begin{matrix}

a=b=0,c>0 \

a<0,{{b}^{2}}-3acle 0 \

end{matrix} right.
C. left[ begin{matrix}

a=b=0,c>0 \

a>0,{{b}^{2}}-3acle 0 \

end{matrix} right. D. left[ begin{matrix}

a=b=0,c>0 \

a>0,{{b}^{2}}-3acge 0 \

end{matrix} right.

Câu 3: Cho các hàm số sau:

(1): y=-{{x}^{3}}+3{{x}^{2}}-3x+1

(2): y=-sqrt{{{x}^{3}}+2}

(3): y=-2x+sin x

(4): y=frac{2-x}{x-1}

Hàm số nào nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng?

A. left( 1 right),left( 2 right) B. left( 1 right),left( 2 right),left( 3 right)
C. left( 1 right),left( 2 right),left( 4 right) D. left( 2 right),left( 3 right)

Câu 4: Tìm tất cả các giá trị của tham số m sao cho hàm số y=-frac{1}{3}{{x}^{3}}-m{{x}^{2}}+left( 2m-3 right)x+2-m luôn nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

A. -3le mle 1 B. mle 1
C.-3< m< 1 D. mge -3

Câu 5: Tìm tất cả các giá trị m để hàm số y=fleft( x right)=mcos x+x luôn đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

A. -1le mle 1 B. m>frac{sqrt{3}}{2}
C.m<frac{1}{2} D. left[ begin{matrix}

mge 1 \

mle -1 \

end{matrix} right.

Câu 6: Cho hàm số y=frac{1}{3}{{x}^{3}}+m{{x}^{2}}-mx-m. Tìm giá trị nhỏ nhất của m để hàm số luôn đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

Khám Phá Thêm:   Lời bài hát Học mèo kêu
A. m=0 B. m=-1
C.m=-5 D. m=-6

Câu 7: Cho hàm số y = f(x) = x3 – 6x2 + 9x – 1. Phương trình f(x) = -13 có bao nhiêu nghiệm?

A. 0 B. 3
C. 2 D. 1

Câu 8: Xác định giá trị của m để hàm số y = dfrac{1}{2} x3 – mx2 + (m + 2)x – (3m – 1) đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

A. m < -1 B. m > 2
C. -1 ≤ m ≤ 2 D.-1 < m < 2

Câu 9: Tìm tất cả các giá trị thực của m sao cho hàm số y = dfrac{1}{3} x3 – mx2 +(2m – 3) – m + 2 luôn nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

A. -3 ≤ m ≤ 1 B. m ≤ 2
C. m ≤ -3; m ≥ 1 D. -3 < m < 1

Câu 10: Tìm m để hàm số đồng biến trên khoảng y = x3 – 3mx2 đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng

A. m ≥ 0 B. m ≤ 0
C. m < 0 D. m =0

Câu 11: Cho hàm số: y = dfrac{-1}{3} x3 + (m +1)x2 – (m + 1) + 2. Tìm các giá trị của tham số m sao cho hàm số đồng biến trên tập xác định của nó.

A. m > 4 B. -2 ≤ m ≤ -1
C. m < 2 D. m < 4

Câu 12: Cho hàm số: y = dfrac{-1}{3}x3 + 2x2 – mx + 2. Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên tập xác định của nó.

A. m ≥ 4 B. m ≤ 4
C. m > 4 D. m < 4

Câu 13: Tìm tham số m để hàm số y=frac{{x - m}}{{x + 1}} đồng biến trên tập xác định của chúng:

A. m ≥ -1 B. m ≤ -1
C. m ≤ 1 D. m ≥ 2

Câu 14: Tìm tất cả các giá trị của tham số m để hàm số:

a. y = (m + 2).frac{x^3}{3} – ( m + 2)x2 – (3m – 1)x + m2 đồng biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng .

b. y = (m – 1)x3 – 3(m – 1)x2 + 3(2m – 3)x + m nghịch biến trên Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng.

Cảm ơn bạn đã xem bài viết Tìm m để hàm số đồng biến, nghịch biến trên R Tìm m để hàm số đồng biến trên khoảng tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Cách xin lỗi người yêu ngọt ngào, hiệu quả nhất
Next Post: 3 Cách nấu canh rong biển chay ngon mà không bị tanh »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích