Bạn đang xem bài viết Tìm m để bất phương trình có nghiệm Ôn tập Toán 10 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.
Bất phương trình là một phần quan trọng trong lĩnh vực toán học, và tìm giá trị m để bất phương trình có nghiệm là một bài toán thú vị và hữu ích. Trong bài viết này, chúng ta sẽ tìm hiểu về cách giải bất phương trình và áp dụng kiến thức này để tìm giá trị m thích hợp. Chủ đề này sẽ khám phá những phương pháp giải bất phương trình cơ bản và phức tạp, kèm theo ví dụ minh họa và bài tập ôn tập để củng cố kiến thức đã học. Hy vọng rằng sau khi đọc bài viết này, bạn sẽ có kiến thức vững chắc về cách tìm giá trị m để bất phương trình có nghiệm, đồng thời cải thiện kỹ năng giải toán của mình. Hãy cùng nhau bắt đầu khám phá chủ đề này và trở thành những “nhà toán học nhí” giỏi nhé!
Tìm m để bất phương trình có nghiệm là tài liệu vô cùng hữu ích không thể thiếu dành cho các học sinh lớp 10 tham khảo. Tìm m để bất phương trình có nghiệm sẽ được học trong chương trình Toán 10 học kì 2 áp dụng đối với cả 3 bộ sách giáo khoa.
Bài tập tìm m để bất phương trình có nghiệm được biên soạn rất chi tiết cụ thể lý thuyết, ví dụ minh họa kèm theo 9 bài tập có đáp án giải chi tiết và 18 bài tập tự luyện. Thông qua tài liệu này giúp các bạn học sinh lớp 10 củng cố kiến thức cơ bản biết vận dụng vào giải các bài toán tìm m để bất phương trình có nghiệm. Ngoài ra các bạn xem thêm tài liệu tìm m để phương trình vô nghiệm, công thức tính độ dài trung tuyến.
1. Phương pháp tìm m để bất phương trình có nghiệm
Phương pháp: Đối với các bài toán tìm điều kiện để bất phương trình nghiệm đúng với mọi x hay bất phương trình vô nghiệm ta sử dụng các lập luận như sau: (ta xét với bất phương trình bậc hai một ẩn)
- f(x) > 0 vô nghiệm ⇔ f(x) ≤ 0 nghiệm đúng với ∀x ∈
. Nghĩa là
- f(x) < 0 vô nghiệm ⇔ f(x) ≥ 0 nghiệm đúng với ∀x ∈
. Nghĩa là
- f(x) ≥ 0 vô nghiệm ⇔ f(x) < 0 nghiệm đúng với ∀x ∈
. Nghĩa là
- f(x) ≤ 0 vô nghiệm ⇔ f(x) > 0 nghiệm đúng với ∀x ∈
. Nghĩa là
2. Ví dụ tìm m để bất phương trình có nghiệm
Ví dụ 1: Cho bất phương trình (m – 1)x2 + 2mx – 3 > 0. Tìm giá trị của m để bất phương trình nghiệm đúng với mọi x thuộc .
Hướng dẫn giải
Đặt (m – 1)x2 + 2mx – 3 = f(x)
TH1: m – 1 = 0 ⇒ m = 1. Thay m = 1 vào bất phương trình ta được: 2x – 3 > 0⇒ (Loại)
TH2: m – 1 ≠ 0 ⇔ m ≠ 1
Để bất phương trình f(x) > 0 nghiệm đúng với mọi x
Vậy không có giá trị nào của m để bất phương trình có nghiệm đúng với mọi x thuộc .
Ví dụ 2: Tìm m để các bất phương trình sau đúng với mọi x thuộc .
a. (m – 3)x2 + (m + 1)x + 2 < 0
b. (m – 1)x2 + (m – 3)x + 4 > 0
Hướng dẫn giải
a. Đặt (m – 3)x2 + (m + 1)x + 2 = f(x)
TH1: m – 3 = 0 ⇔ m = 3. Thay m = 3 vào bất phương trình ta được: 2x + 2 < 0 ⇔ x < -1 (Loại)
TH2: m – 3 ≠ 0 ⇔ m ≠ 3
Để bất phương trình f(x) < 0 nghiệm đúng với mọi x
Ta có: m2 – 6m + 25 = (m – 3)2 + 16 ≥ 16,∀m
Vậy không có giá trị nào của m để bất phương trình có nghiệm đúng với mọi x thuộc
b. Đặt (m – 1)x2 + (m – 3)x + 4 = f(x)
TH1: m – 1 = 0 ⇔ m = 1. Thay m = 1 vào bất phương trình ta được: -2x + 4 > 0 ⇔ x < 2 (Loại)
TH2: m – 1 ≠ 0 ⇔ m ≠ 1
Để bất phương trình f(x) > 0 nghiệm đúng với mọi x
Vậy thì bất phương trình có nghiệm đúng với mọi x thuộc
.
3. Bài tập tìm m để bất phương trình có nghiệm
Bài 1: Tìm m để bất phương trình x2 – 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi x ∈ [0; 1]
Hướng dẫn giải:
Đặt x2 – 2(m + 1) + m2 + 2m ≤ 0
Vậy bất phương trình có nghiệm đúng với ∀x ∈ [0; 1]
Phương trình f(x) = 0 có hai nghiệm thỏa mãn
Vậy với -1 ≤ m ≤ 0 thỏa mãn điều kiện đề bài cho.
Bài 2: Tìm m để bất phương trình sau (m + 2)x2 – 2mx + m2 + 2m ≤ 0 có nghiệm.
Hướng dẫn giải
Xét 3 trường hợp:
Trường hợp 1: Với m + 2 = 0 ⇒ m = -2 ta được:
(1) ⇔ 4x + 4 <0 ⇔ x < -1
Bất phương trình vô nghiệm
Trường hợp 2: Với m < -2
Bất phương trình đã cho cũng có nghiệm
Trường hợp 3: m + 2 > 0 ⇒ m > -2. Khi đó bất phương trình đã cho có nghiệm thì vế trái phải có 2 nghiệm phân biệt :
Vậy với |m| < thì bất phương trình có nghiệm.
Bài 3: Tìm m để bất phương trình sau có nghiệm: m2x + 3 < mx + 4
Hướng dẫn giải:
Bất phương trình tương đương với: m2x – mx < 4 ⇔ (m2 – m)x < 1; m2 – m = 0 ⇔m = {0;1} thì bất phương trình trở thành 0 < 1 đúng với mọi x .
Nên bất phương trình có vô số nghiệm.
Với m2 – m ≠ 0 ⇔ m ≠ {0; 1} thì bất phương trình trở thành luôn có nghiệm là
Vậy bất phương trình có nghiệm với mọi giá trị thực của m.
Bài 4: Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m – 1)x – 5 < 0
Nghiệm đúng với mọi x thuộc khoảng ( -1; 1)
Hướng dẫn giải:
Ta có:
⇔ -1 ≤ m ≤ – 1
Vậy để bất phương trình có nghiệm đúng với mọi x thuộc khoảng ( -1, 1) thì m ∈ (-1; – 1)
Bài 5: Tìm m để bất phương trình có nghiệm đúng với mọi x: (m + 4)x2 – 2mx + 2m – 6 < 0
Hướng dẫn giải:
+ Với m = – 4 thì bất phương trình trở thành: 8x – 14 < 0, ∀x (loại)
+ Với
Vậy bất phương trình có nghiệm đúng với mọi x khi m < -4.
Bài 6: Cho bất phương trình: x2 + 4x + 3 + m ≤ 0
a. Tìm m để bất phương trình vô nghiệm.
b. Tìm m để bất phương trình có đúng một nghiệm.
c. Tìm m để bất phương trình có nghiệm là một đoạn có độ dài bằng 2.
Hướng dẫn giải
a. Bất phương trình vô nghiệm
⇔ Δ’ < 0 ⇔ 1 – m < 0 ⇔ m > 1
Vậy m > 1 thì bất phương trình vô nghiệm.
b. Bất phương trình có đúng một nghiệm.
⇔ Δ’ = 0 ⇔ 1 – m = 0 ⇔ m = 1
Vậy m = 1 bất phương trình có đúng một nghiệm
c. Để bất phương trình có nghiệm là một đoạn trên trục số có độ dài bằng 2 thì tam thức ở vế trái của bất phương trình phải có hai nghiệm phân biệt x, x’ thỏa mãn điều kiện:
Vậy m = -3 thì bất phương trình có nghiệm là một đoạn có độ dài bằng 2.
Bài 7: Tìm m để bất phương trình: x4 + 2mx2 + m ≥ 0 có nghiệm đúng với mọi x.
Hướng dẫn giải
Đặt t = x2, t ≥ 0
Khi đó bất phương trình trở thành:
f(t) = t2 +2mt + m ≥ 0 (*)
⇒Δ’ = m2 – m
Trường hợp 1: Δ’ ≤ 0 ⇔ m2 – m ≤ 0 ⇔ 0 ≤ m ≤ 1
Khi đó (*) luôn đúng.
Trường hợp 2: Nếu Δ’ > 0, điều kiện là phương trình f(t) phải có hai nghiệm phân biệt thỏa mãn: t1 < t2 ≤ 0
Tóm lại ta cần suy ra như sau:
Vậy m ≥ 0 thì bất phương trình có nghiệm đúng với mọi giá trị x.
Bài 8: Tìm m để bất phương trình có nghiệm đúng với mọi x
Hướng dẫn giải
Với m = -4 thì bất phương trình trở thành: (loại)
Với thì
Vậy bất phương trình có nghiệm đúng với mọi x khi m < -4
Bài 9: Tìm m để bất phương trình có nghiệm.
Hướng dẫn giải
Xét 3 trường hợp:
TH1: Với ta được:
(1)
Bất phương trình vô nghiệm
TH2: Với
Bất phương trình đã cho cũng có nghiệm
TH3: . Khi đó bất phương trình đã cho có nghiệm thì vế trái phải có 2 nghiệm phân biệt:
Vậy với thì bất phương trình có nghiệm.
Bài 9 Tìm m để bất phương trình có nghiệm
Gợi ý đáp án
Bất phương trình tương đương với:
Với thì bất phương trình trở thành 0 < 1 đúng với mọi x
Nên bất phương trình có vô số nghiệm.
Với thì bất phương trình trở thành
luôn có nghiệm là
Vậy bất phương trình có nghiệm với mọi giá trị thực của m
4. Bài tập vận dụng tìm m để bất phương trình có nghiệm
Bài 1: Cho tam thức f(x) = x2 – 2mx + 3m – 2. Tìm điều kiện của m để tam thức f(x) > 0, ∀x ∈ [1; 2] .
Bài 2: Xác định m sao cho với mọi x ta đều có: mx2 – 4x + 3m + 1 >0
Bài 3: Tìm m để bất phương trình: x2 – 2x + 1 – m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].
Bài 4: Tìm m để bất phương trình: (m – 1)x2 + (2 – m)x- 1 > 0 có nghiệm đúng với mọi ∀x ∈ (1; 2).
Bài 5: Tìm m để bất phương trình: 3(m – 2)x2 + 2(m + 1)x + m – 1 < 0 có nghiệm đúng với mọi ∀x ∈ (-1; 3).
Bài 6: Tìm m để bất phương trình m2 – 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1; 0,5).
Bài 7: Tìm điều kiện của m để mọi nghiệm của bất phương trình: x2 + (m – 1)x – m ≤ 0
đều là nghiệm của bất phương trình.
Bài 8: Với giá trị nào của m thì bất phương trình: (m – 2)x2 + 2mx – 2 – m < 0 có nghiệm
Bài 9: Tìm các giá trị của m để bất phương trình f(x) = – (m2 + 2)x2 – 2mx + 1 – m > 0
Nghiệm đúng với mọi x thuộc nửa khoảng (2; +∞)
Bài 10: Tìm giá trị của tham số m khác 0 để bất phương trình f(x) = 2mx2 – (1 – 5m)x + 3m+ 1>0 có nghiệm đúng với mọi x thuộc khoảng (-2; 0).
Bài 11: Tìm giá trị tham số để bất phương trình sau nghiệm luôn đúng với mọi x:
a. 5x2 – x + m > 0
b. mx2 – 10x – 5 < 0
c. m(m+2)x2 – 2mx + 2 > 0
d. (m + 1)x2 – 2(m – 1)x + 3m – 3 < 0
Bài 12: Tìm m để bất phương trình có nghiệm đúng với mọi x thuộc : (m – 5)x² – 2x + m + 1 > 0
Bài 13: Tìm m để các bất phương trình sau có nghiệm đúng với mọi x
a. ![]() |
b. ![]() |
c. ![]() |
d. ![]() |
Bài 14: Cho bất phương trình:
Tìm m để bất phương trình có nghiệm đúng với mọi x thuộc .
Bài 15: Tìm m để các bất phương trình sau nghiệm đúng với mọi x.
a.
b.
c.
Bài 16: Xác định m để đa thức sau: (3m + 1)x² – (3m + 1)x + m + 4 luôn dương với mọi x.
Bài 17: Tìm m để phương trình: (m2 + m + 1)x2 + (2m – 3)x + m – 5 = 0 có 2 nghiệm dương phân biệt
Bài 18 Tìm m để các phương trình sau có nghiệm
Bài 18. Tìm m để các bất phương trình sau nghiệm đúng với mọi x :
Trong quá trình ôn tập Toán 10, chúng ta có thể gặp nhiều bài tập liên quan đến việc tìm m để bất phương trình có nghiệm. Đây là một chủ đề quan trọng và đòi hỏi kiến thức về bất phương trình, cộng thêm khả năng suy luận và giải quyết vấn đề của học sinh.
Việc tìm m để bất phương trình có nghiệm được thực hiện thông qua việc phân tích các điều kiện của bất phương trình và sử dụng các phương pháp giải quyết bài toán. Đầu tiên, chúng ta cần xác định mức độ của bất phương trình, tức là số lượng nghiệm mà nó có thể có. Ba trường hợp phổ biến là bất phương trình vô nghiệm, bất phương trình có một nghiệm duy nhất hoặc bất phương trình có nhiều nghiệm.
Đối với bất phương trình đơn giản như $ax + b > 0$ hay $ax + b < 0$ (với $a, b$ là các hằng số), ta có thể tìm được giá trị của $m$ bằng cách giải phương trình liên quan đến bất phương trình này. Ví dụ, với bất phương trình $3x + 2 > 0$, ta giải phương trình $3x + 2 = 0$ để tìm xem nghiệm của phương trình này nằm ở đâu trên trục số. Khi đã xác định được vị trí của nghiệm trên trục số, ta có thể suy ra được khoảng giá trị của x mà bất phương trình thỏa mãn.
Đối với bất phương trình phức tạp hơn như bất phương trình bậc hai, ta cần sử dụng phương pháp khác nhau. Chúng ta có thể áp dụng phương pháp viết lại bất phương trình dưới dạng khác hoặc sử dụng các quy tắc giảm bậc bất phương trình để rút ra kết quả. Ví dụ, để giải bất phương trình $x^2 – 7x + 10 geq 0$, ta cần tìm giá trị của $m$ sao cho đa thức $x^2 – 7x + 10$ không âm trên mọi khoảng giá trị của x. Chúng ta có thể sử dụng phương pháp viết lại bất phương trình dưới dạng khác như $(x-2)(x-5) geq 0$ rồi xét từng khoảng giá trị của $x$ để tìm được giá trị của $m$.
Trong quá trình tìm m để bất phương trình có nghiệm, chúng ta cũng cần cẩn thận kiểm tra lại kết quả bằng cách thay giá trị $m$ tìm được vào bất phương trình ban đầu và kiểm tra xem kết quả có thỏa mãn hay không.
Tìm m để bất phương trình có nghiệm là một chủ đề quan trọng trong ôn tập Toán 10, đòi hỏi kiến thức vững chắc về bất phương trình và khả năng giải quyết vấn đề. Hi vọng rằng việc ôn tập này sẽ giúp các em nắm vững kiến thức và nâng cao kỹ năng giải quyết vấn đề toán học.
Cảm ơn bạn đã xem bài viết Tìm m để bất phương trình có nghiệm Ôn tập Toán 10 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.
Từ Khoá Liên Quan:
1. Phương pháp giải bất phương trình
2. Tìm m để bất phương trình có nghiệm
3. Ôn tập giải bất phương trình
4. Các bước giải bất phương trình
5. Tìm điều kiện để bất phương trình có nghiệm
6. Giải bất phương trình bậc nhất
7. Bất phương trình bậc 2 và tìm m
8. Tìm nghiệm bất phương trình với m cho trước
9. Bài tập tìm m để bất phương trình có nghiệm
10. Tìm giá trị m để bất phương trình có một nghiệm duy nhất
11. Tìm m để bất phương trình ax^2 + bx + c > 0 có nghiệm
12. Cách tìm m để bất phương trình có 2 nghiệm
13. Bài tập bất phương trình và tìm m
14. Xác định m để bất phương trình có nghiệm là một khoảng cách
15. Tìm điều kiện để bất phương trình có 3 nghiệm