Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) Giải SGK Toán 9 Tập 1 (trang 29, 30)

Tháng 1 3, 2024 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) Giải SGK Toán 9 Tập 1 (trang 29, 30) tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán lớp 9 trang 29, 30 tập 1 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi và bài tập trong SGK bài 7 Biến đổi đơn giản biểu thức chứa căn thức bậc hai Tiếp theo.

Giải Toán 9 Bài 7 tập 1 Biến đổi đơn giản biểu thức chứa căn thức bậc hai(Tiếp theo) được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán. Giải Toán lớp 9 trang 29, 30 tập 1 là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Mục Lục Bài Viết

  • Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
  • Trả lời câu hỏi Toán 9 Bài 7
  • Giải bài tập Toán 9 trang 29, 30 tập 1
    • Bài 48 (trang 29 SGK Toán 9 Tập 1)
    • Bài 49 (trang 29 SGK Toán 9 Tập 1)
    • Bài 50 (trang 30 SGK Toán 9 Tập 1)
    • Bài 51 (trang 30 SGK Toán 9 Tập 1)
    • Bài 52 (trang 30 SGK Toán 9 Tập 1)
  • Giải bài tập toán 9 trang 30: Luyện tập
    • Bài 53 (trang 30 SGK Toán 9 Tập 1)
    • Bài 54 (trang 30 SGK Toán 9 Tập 1)
    • Bài 55 (trang 30 SGK Toán 9 Tập 1)
    • Bài 56 (trang 30 SGK Toán 9 Tập 1)
    • Bài 57 (trang 30 SGK Toán 9 Tập 1)
  • Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai
    • I. Khử mẫu của biểu thức lấy căn
    • II. Trục căn thức ở mẫu
Khám Phá Thêm:   Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc, đã nghe Viết bài văn kể lại một câu chuyện - Tiếng Việt 4 KNTT

Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)

Trả lời câu hỏi Toán 9 Bài 7

Câu hỏi 1 (SGK trang 28): Khử mẫu của biểu thức lấy căn:

a. Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) Giải SGK Toán 9 Tập 1 (trang 29, 30) b. sqrt {frac{3}{{125}}} c. sqrt {frac{3}{{2{a^3}}}} với a > 0

Lời giải chi tiết

a. sqrt {frac{4}{5}}  = frac{{sqrt 4 }}{{sqrt 5 }} = frac{{2.sqrt 5 }}{{sqrt 5 sqrt 5 }} = frac{{2sqrt 5 }}{5}

b. sqrt {frac{3}{{125}}}  = frac{{sqrt 3 }}{{sqrt {25.5} }} = frac{{sqrt 3 }}{{5sqrt 5 }} = frac{{sqrt 3 .sqrt 5 }}{{5.sqrt 5 .sqrt 5 }} = frac{{sqrt {15} }}{{5.5}} = frac{{sqrt {15} }}{{25}}

c. sqrt {frac{3}{{2{a^3}}}}  = sqrt {frac{{3.2{a^3}}}{{2{a^3}.2{a^3}}}}  = frac{{sqrt {{a^2}.6a} }}{{sqrt {{{left( {2{a^3}} right)}^2}} }} = frac{{asqrt {6a} }}{{2{a^3}}} = frac{{sqrt {6a} }}{{2{a^2}}}

Câu hỏi 2 (SGK trang 29): Trục căn thức ở mẫu:

a. frac{5}{{3sqrt 8 }};frac{2}{{sqrt b }} với b > 0

b. frac{5}{{5 - 2sqrt 3 }};frac{{2a}}{{1 - sqrt a }} với a ≥ 0, a ≠ 1

c. frac{4}{{sqrt 7  + sqrt 5 }};frac{{6a}}{{2sqrt a  - sqrt b }} với a > b > 0

Lời giải chi tiết

a. Ta có:

begin{matrix}
  dfrac{5}{{3sqrt 8 }} = dfrac{5}{{3sqrt {4.2} }} = dfrac{5}{{3.2.sqrt 2 }} = dfrac{{5sqrt 2 }}{{6sqrt 2 .sqrt 2 }} = dfrac{{5sqrt 2 }}{{6.2}} = dfrac{{5sqrt 2 }}{{12}} hfill \
  dfrac{2}{{sqrt b }} = dfrac{{2sqrt b }}{{sqrt b .sqrt b }} = dfrac{{2sqrt b }}{b} hfill \ 
end{matrix}

b. Ta có:

begin{matrix}
  dfrac{5}{{5 - 2sqrt 3 }} = dfrac{{5left( {5 + 2sqrt 3 } right)}}{{left( {5 - 2sqrt 3 } right)left( {5 + 2sqrt 3 } right)}} = dfrac{{5left( {5 + 2sqrt 3 } right)}}{{{5^2} - {{left( {2sqrt 3 } right)}^2}}} = dfrac{{5left( {5 + 2sqrt 3 } right)}}{{25 - 12}} = dfrac{{5left( {5 + 2sqrt 3 } right)}}{{13}} hfill \
  dfrac{{2a}}{{1 - sqrt a }} = dfrac{{2aleft( {1 - sqrt a } right)}}{{left( {1 - sqrt a } right)left( {1 + sqrt a } right)}} = dfrac{{2aleft( {1 - sqrt a } right)}}{{{1^2} - a}} = dfrac{{2aleft( {1 - sqrt a } right)}}{{1 - a}} hfill \ 
end{matrix}

c. Ta có:

Giải bài tập Toán 9 trang 29, 30 tập 1

Bài 48 (trang 29 SGK Toán 9 Tập 1)

Khử mẫu của biểu thức lấy căn

sqrt{dfrac{1}{600}};,,sqrt{dfrac{11}{540}};,,sqrt{dfrac{3}{50}};,,sqrt{dfrac{5}{98}}; ,,sqrt{dfrac{(1-sqrt{3})^{2}}{27}}.

Gợi ý đáp án

+sqrt{dfrac{1}{600}}=dfrac{sqrt 1}{sqrt{600}}=dfrac{ 1}{sqrt{6.100}}=dfrac{1}{sqrt{6.10^2}}

=dfrac{ 1}{sqrt{6}.sqrt{10^2}}=dfrac{ 1}{10sqrt{6}}=dfrac{ 1.sqrt 6}{10.6}=dfrac{ sqrt 6}{60}

+sqrt{dfrac{11}{540}}=dfrac{sqrt{11}}{sqrt{540}}=dfrac{sqrt{11}}{sqrt{36.15}}

=dfrac{sqrt{11}}{sqrt{36}.sqrt{15}}=dfrac{sqrt{11}}{sqrt{6^2}.sqrt{15}}

=dfrac{sqrt{11}}{6sqrt{15}}=dfrac{sqrt{11}.sqrt{15}}{6.15}

=dfrac{sqrt{11.15}}{90}=dfrac{sqrt{165}}{90}.

+ sqrt{dfrac{3}{50}}=dfrac{sqrt 3}{sqrt{50}}=dfrac{sqrt 3}{sqrt{25.2}}=dfrac{sqrt{3}}{sqrt{25}.sqrt{2}}

=dfrac{sqrt{3}}{sqrt{5^2}.sqrt{2}}=dfrac{sqrt{3}}{5sqrt{2}}=dfrac{sqrt{3}.sqrt 2}{5.2}

=dfrac{sqrt{3.2}}{10}=dfrac{sqrt{6}}{10}

+ sqrt{dfrac{5}{98}}=dfrac{sqrt 5}{sqrt {98}}=dfrac{sqrt 5}{sqrt{49.2}}=dfrac{sqrt 5}{sqrt{49}sqrt{2}}

=dfrac{sqrt 5}{sqrt{7^2}.sqrt 2}=dfrac{sqrt 5}{7sqrt 2}=dfrac{sqrt 5 . sqrt 2}{7. 2}

=dfrac{sqrt {5. 2}}{14}=dfrac{sqrt{10}}{14}.

+sqrt{dfrac{(1-sqrt{3})^{2}}{27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {9.3}}

=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {3^2.3}}=dfrac{|1-sqrt{3}|}{3sqrt {3}}

Vì 1< 3 Leftrightarrow sqrt 1 < sqrt 3 Leftrightarrow 1< sqrt 3 Leftrightarrow 1- sqrt 3 < 0

Leftrightarrow |1- sqrt 3|=-(1-sqrt 3)=-1 + sqrt 3 = sqrt 3 -1.

Do đó: dfrac{|1-sqrt{3}|}{3sqrt {3}}=dfrac{sqrt{3}-1}{3sqrt {3}}=dfrac{sqrt 3(sqrt{3}-1)}{9}=dfrac{3-sqrt 3}{9}.

Bài 49 (trang 29 SGK Toán 9 Tập 1)

Khử mẫu của biểu thức lấy căn

absqrt{dfrac{a}{b}};,,, dfrac{a}{b}sqrt{dfrac{b}{a}};,,, sqrt{dfrac{1}{b}+dfrac{1}{b^{2}}};,,, sqrt{dfrac{9a^{3}}{36b}};,,, 3xysqrt{dfrac{2}{xy}}.

Gợi ý đáp án

Theo đề bài các biểu thức đều có nghĩa.

+ Ta có

absqrt{dfrac{a}{b}}=absqrt{dfrac{a.b}{b.b}}=absqrt{dfrac{ab}{b^2}}=abdfrac{sqrt{ab}}{sqrt{b^2}}=abdfrac{sqrt{ab}}{left | b right |}.

*) Nếu b > 0 thì |b|=b Rightarrow abdfrac{sqrt{ab}}{left | b right |}=abdfrac{sqrt{ab}}{b}=asqrt{ab}.

*) Nếu b < 0 thì |b|=-bRightarrow abdfrac{sqrt{ab}}{left | b right |}=-abdfrac{sqrt{ab}}{b}=-asqrt{ab}.

+ Ta có:

dfrac{a}{b}sqrt{dfrac{b}{a}}=dfrac{a}{b}sqrt{dfrac{b.a}{a.a}}=dfrac{a}{b}sqrt{dfrac{ab}{a^2}}

=dfrac{a}{b}.dfrac{sqrt{ab}}{sqrt{a^2}}=dfrac{a}{b}.dfrac{sqrt{ab}}{|a|}=dfrac{asqrt{ab}}{b|a|}

*) Nếu a> 0 thì |a|=a Rightarrow dfrac{asqrt{ab}}{b|a|}=dfrac{asqrt{ab}}{ab}=dfrac{sqrt{ab}}{b} .

*) Nếu a<0 thì |a|=-a Rightarrow dfrac{asqrt{ab}}{b|a|}=-dfrac{asqrt{ab}}{ab}=-dfrac{sqrt{ab}}{b} .

+ Ta có:

sqrt{dfrac{1}{b}+dfrac{1}{b^2}}=sqrt{dfrac{b}{b^2}+dfrac{1}{b^2}}=sqrt{dfrac{b+1}{b^2}}

=dfrac{sqrt{b+1}}{sqrt{b^2}}=dfrac{sqrt{b+1}}{|b|}.

*) Nếu b> 0 thì |b|=b Rightarrow dfrac{sqrt{b+1}}{|b|}=dfrac{sqrt{b+1}}{b}.

*) Nếu -1le b < 0 thì |b|=-b Rightarrow dfrac{sqrt{b+1}}{|b|}=-dfrac{sqrt{b+1}}{b}.

+ Ta có:

sqrt{dfrac{9a^3}{36b}}=sqrt{dfrac{9}{36}}.sqrt{dfrac{a^3}{b}}=sqrt{dfrac{1}{4}}.sqrt{dfrac{a^3.b}{b.b}}

=dfrac{1}{2}.sqrt{dfrac{a^2.ab}{b^2}}=dfrac{1}{2}.dfrac{sqrt{a^2}.sqrt{ab}}{sqrt{b^2}}

=dfrac{1}{2}.dfrac{|a|sqrt{ab}}{|b|}=dfrac{|a|sqrt{ab}}{2|b|}.

*) Nếu a ge 0, b > 0 thì |a|=a, |b| =b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}.

*) Nếu a < 0, b < 0 thì |a|=-a, |b| =-b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}.

(Chú ý: Theo đề bài sqrt{dfrac{9a^3}{36b}}có nghĩa nên a, b cùng dấu, do đó chỉ cần xét 2 trường hợp a, b cùng âm hoặc cùng dương).

+ Ta có:

3xysqrt{dfrac{2}{xy}}=3xy.sqrt{dfrac{2.xy}{xy.xy}}=3xy.dfrac{sqrt{2xy}}{sqrt{(xy)^2}}

=3xy.dfrac{sqrt{2xy}}{|xy|} =dfrac{3xy.sqrt{2xy}}{xy}=3sqrt{2xy}.

(Vì theo đề bài sqrt{dfrac{2}{xy}} có nghĩa nên dfrac{2}{xy} > 0 Leftrightarrow xy > 0 Rightarrow |xy|=xy.)

Bài 50 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

Khám Phá Thêm:   Văn mẫu lớp 11: Tóm tắt tác phẩm Vào chùa gặp lại Vào chùa gặp lại của Minh Chuyên

dfrac{5}{sqrt{10}};,,, dfrac{5}{2sqrt{5}};,,, dfrac{1}{3sqrt{20}};,,, dfrac{2sqrt{2}+2}{5sqrt{2}};,,, dfrac{y+b.sqrt{y}}{b. sqrt{y}}.

Gợi ý đáp án

+ Ta có:

dfrac{5}{sqrt{10}}=dfrac{5.sqrt{10}}{sqrt{10}.sqrt{10}}=dfrac{5sqrt{10}}{(sqrt{10})^2}=dfrac{5sqrt{10}}{10}

=dfrac{5.sqrt{10}}{5.2}=dfrac{sqrt{10}}{2}.

+ Ta có:

dfrac{5}{2sqrt{5}}=dfrac{5.sqrt 5}{2sqrt 5.sqrt 5}=dfrac{5sqrt{5}}{2.(sqrt 5.sqrt 5)}=dfrac{5sqrt{5}}{2(sqrt 5)^2}

=dfrac{5sqrt 5}{2.5}=dfrac{sqrt 5}{2}.

+ Ta có:

dfrac{1}{3sqrt{20}}=dfrac{1.sqrt{20}}{3sqrt{20}.sqrt{20}}=dfrac{sqrt{20}}{3.(sqrt{20}.sqrt{20})}=dfrac{sqrt{20}}{3.(sqrt{20})^2}

=dfrac{sqrt{20}}{3.20}=dfrac{sqrt{2^2.5}}{60}=dfrac{2sqrt 5}{60}=dfrac{2sqrt 5}{2.30}=dfrac{sqrt 5}{30}.

+ Ta có:

dfrac{(2sqrt{2}+2)}{5.sqrt 2}=dfrac{(2sqrt 2+2).sqrt 2}{5sqrt 2. sqrt 2}=dfrac{2sqrt 2.sqrt 2+2.sqrt 2}{5.(sqrt 2)^2}

=dfrac{2.2+2sqrt 2}{5.2}=dfrac{2(2+sqrt 2)}{5.2}=dfrac{2+sqrt 2}{5}.

+ Ta có:

dfrac{y+bsqrt{y}}{bsqrt{y}}=dfrac{(y+bsqrt y).sqrt y}{bsqrt y .sqrt y}=dfrac{ysqrt y+bsqrt y.sqrt y}{b.(sqrt y)^2}

= dfrac{ysqrt y+b(sqrt y)^2}{by}=dfrac{ysqrt y+by}{by}

=dfrac{y(sqrt y+b)}{b.y}=dfrac{sqrt y+b}{b}.

Bài 51 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{3}{sqrt{3}+1};,,,dfrac{2}{sqrt{3}-1};,,,dfrac{2+sqrt{3}}{2-sqrt{3}};,,,dfrac{b}{3+sqrt{b}};,,,dfrac{p}{2sqrt{p}-1}.

Gợi ý đáp án:

+ Ta có:

dfrac{3}{sqrt{3}+1}=dfrac{3(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=dfrac{3sqrt 3 - 3.1}{(sqrt 3)^2-1^2}

=dfrac{3sqrt 3 -3}{3-1}=dfrac{3sqrt{3}-3}{2}.

+ Ta có:

dfrac{2}{sqrt{3}-1}=dfrac{2(sqrt{3}+1)}{(sqrt{3}-1)(sqrt{3}+1)}=dfrac{2(sqrt 3 + 1)}{(sqrt 3)^2-1^2}

=dfrac{2(sqrt 3 + 1)}{3-1}=dfrac{2(sqrt{3}+1)}{2}=sqrt{3}+1.

+ Ta có:

dfrac{2+sqrt{3}}{2-sqrt{3}}=dfrac{(2+sqrt{3}).(2+sqrt 3)}{(2-sqrt{3})(2+sqrt{3})}=dfrac{(2+sqrt{3})^2}{2^2-(sqrt{3})^2}

=dfrac{2^2+2.2.sqrt 3+(sqrt{3})^2}{4-3}=dfrac{4+4sqrt 3+3}{1}=dfrac{(4+3)+4sqrt 3}{1}

=dfrac{7+4sqrt 3}{1}=7+4sqrt{3}.

+ Ta có:

dfrac{b}{3+sqrt{b}}=dfrac{b(3-sqrt{b})}{(3+sqrt{b})(3-sqrt{b})}

=dfrac{b(3-sqrt{b})}{3^2-(sqrt b)^2}=dfrac{b(3-sqrt{b})}{9-b};(bneq 9).

+ Ta có:

dfrac{p}{2sqrt{p}-1}=dfrac{p(2sqrt{p}+1)}{(2sqrt{p}-1)(2sqrt{p}+1)}

=dfrac{p(2sqrt{p}+1)}{(2sqrt{p})^2-1^2}=dfrac{p(2sqrt{p}+1)}{4p-1}=dfrac{2psqrt{p}+p}{4p-1}

Bài 52 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{2}{sqrt{6}-sqrt{5}};,, dfrac{3}{sqrt{10}+sqrt{7}};,,, dfrac{1}{sqrt{x}-sqrt{y}};,,, dfrac{2ab}{sqrt{a}-sqrt{b}}.

Gợi ý đáp án

+ Ta có:

dfrac{2}{sqrt{6}-sqrt{5}}=dfrac{2(sqrt{6}+sqrt{5})}{(sqrt{6}-sqrt{5})(sqrt{6}+sqrt{5})}

=dfrac{2(sqrt{6}+sqrt{5})}{(sqrt{6})^2-(sqrt{5})^2}=dfrac{2(sqrt{6}+sqrt{5})}{6-5}

=dfrac{2(sqrt{6}+sqrt{5})}{1}=2(sqrt{6}+sqrt{5}).

+ Ta có:

dfrac{3}{sqrt{10}+sqrt{7}}=dfrac{3(sqrt{10}-sqrt{7})}{(sqrt{10}+sqrt{7})(sqrt{10}-sqrt{7})}

=dfrac{3(sqrt{10}-sqrt{7})}{(sqrt{10})^2-(sqrt{7})^2}=dfrac{3(sqrt{10}-sqrt{7})}{10-7}

=dfrac{3(sqrt{10}-sqrt{7})}{3}=sqrt{10}-sqrt{7}.

+ Ta có:

dfrac{1}{sqrt{x}-sqrt{y}}=dfrac{1.(sqrt{x}+sqrt{y})}{(sqrt{x}-sqrt{y})(sqrt{x}+sqrt{y})}

=dfrac{sqrt x + sqrt y}{(sqrt x)^2-(sqrt y)^2}=dfrac{sqrt{x}+sqrt{y}}{x-y}

+ Ta có:

dfrac{2ab}{sqrt{a}-sqrt{b}}=dfrac{2ab(sqrt{a}+sqrt{b})}{(sqrt{a}-sqrt{b})(sqrt{a}+sqrt{b})}

=dfrac{2ab(sqrt a+ sqrt b)}{(sqrt a)^2-(sqrt b)^2}=dfrac{2ab(sqrt{a}+sqrt{b})}{a-b}.

Giải bài tập toán 9 trang 30: Luyện tập

Bài 53 (trang 30 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa) :

a. sqrt{18(sqrt{2}-sqrt{3})^{2}};

b. absqrt{1+dfrac{1}{a^{2}b^{2}}}

c. sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}

d. dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}

Gợi ý đáp án

a. sqrt{18(sqrt{2}-sqrt{3})^{2}};

Ta có:

sqrt{18(sqrt{2}-sqrt{3})^{2}}=sqrt {18}.sqrt{(sqrt 2 - sqrt 3)^2}

=sqrt{9.2}.|sqrt{2}-sqrt{3}|=sqrt{3^2.2}.|sqrt{2}-sqrt{3}|

=3sqrt{2}.|sqrt{2}-sqrt{3}|=3sqrt{2}(sqrt{3}-sqrt{2})

=3sqrt {2.3}- 3(sqrt 2)^2

=3sqrt 6 -3.2=3sqrt{6}-6.

(Vì  2 < 3Leftrightarrow sqrt 2 < sqrt 3 Leftrightarrow sqrt 2 -sqrt 3 <0

Do đó: |sqrt 2 -sqrt 3|=-(sqrt 2 -sqrt 3)=-sqrt 2 +sqrt 3=sqrt 3-sqrt2).

b. absqrt{1+dfrac{1}{a^{2}b^{2}}}

Ta có:

absqrt{1+dfrac{1}{a^{2}b^{2}}}=absqrt{dfrac{a^2b^2}{a^2b^2}+dfrac{1}{a^2b^2}}=absqrt{dfrac{a^2b^2+1}{a^2b^2}}

=abdfrac{sqrt{a^2b^2+1}}{sqrt{a^2b^2}}=abdfrac{sqrt{a^2b^2+1}}{sqrt{(ab)^2}}

=abdfrac{sqrt{a^2b^2+1}}{|ab|}

Nếu ab > 0 thì |ab|=ab

Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{ab}=sqrt{a^2b^2+1}.

Nếu ab < 0 thì |ab|=-ab

Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{-ab}=-sqrt{a^2b^2+1}.

c. sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}

Ta có:

sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}=sqrt{dfrac{a.b}{b^{3}.b}+dfrac{a}{b^{4}}}=sqrt{dfrac{ab}{b^4}+dfrac{a}{b^4}}

=sqrt{dfrac{ab+a}{b^4}}=dfrac{sqrt{ab+a}}{sqrt{(b^2)^2}}=dfrac{sqrt{ab+a}}{|b^2|}=dfrac{sqrt{ab+a}}{b^2}.

(Vì b^2 > 0 với mọi b ne 0 nên |b^2|=b^2).

d. dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}

Ta có:

dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}=dfrac{(sqrt a)^2+sqrt{a}.sqrt b}{sqrt{a}+sqrt{b}}=dfrac{sqrt a (sqrt a+sqrt b)}{sqrt{a}+sqrt{b}}

=sqrt a.

Bài 54 (trang 30 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):

dfrac{2+sqrt{2}}{1+sqrt{2}};,,, dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}};,,,dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2};

Gợi ý đáp án

* Ta có:

dfrac{2+sqrt{2}}{1+sqrt{2}}=dfrac{(sqrt 2)^2+ sqrt 2}{1+ sqrt 2}=dfrac{sqrt{2}(sqrt{2}+1)}{1+sqrt{2}}

=dfrac{sqrt 2(1+ sqrt 2)}{sqrt 2}=sqrt{2}.

Cách khác:

begin{array}{l}
dfrac{{2+ sqrt 2 }}{{1 + sqrt 2 }} = dfrac{{left( {2 + sqrt 2 } right)left( {1 - sqrt 2 } right)}}{{left( {1 + sqrt 2 } right)left( {1 - sqrt 2 } right)}}\
= dfrac{{2.1 - 2sqrt 2 + sqrt 2 - {{left( {sqrt 2 } right)}^2}}}{{{1^2} - {{left( {sqrt 2 } right)}^2}}}\
= dfrac{{2 - 2sqrt 2 + sqrt 2 - 2}}{{1 - 2}}\
= dfrac{{ - sqrt 2 }}{{ - 1}} = sqrt 2
end{array}

Nhận xét: Cách làm thứ nhất phân tích tử thành nhân tử rồi rút gọn với mẫu đơn giản hơn cách thứ hai.

* Ta có:

dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}}=dfrac{sqrt{3.5}-sqrt{5.1}}{1-sqrt{3}}=dfrac{sqrt{5}.sqrt{3}-sqrt{5}.1}{1-sqrt{3}}

=dfrac{sqrt{5}(sqrt{3}-1)}{1-sqrt{3}}=dfrac{-sqrt{5}(1-sqrt{3})}{1-sqrt{3}}=-sqrt{5}.

+ Ta có:

dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2}=dfrac{(sqrt 2)^2.sqrt 3-sqrt 6}{sqrt{4.2}- 2}

=dfrac{sqrt 2.(sqrt 2.sqrt 3)-sqrt 6}{2sqrt 2 -2}=dfrac{sqrt2.sqrt{6}-sqrt 6}{2(sqrt{2}-1)}

=dfrac{sqrt{6}(sqrt{2}-1)}{2(sqrt{2}-1)}=dfrac{sqrt{6}}{2}.

+ Ta có:

dfrac{a-sqrt{a}}{1-sqrt{a}}=dfrac{(sqrt a)^2-sqrt a .1}{1-sqrt a}=dfrac{sqrt{a}(sqrt{a}-1)}{1-sqrt{a}}

=dfrac{-sqrt{a}(1-sqrt{a})}{1-sqrt{a}}=-sqrt{a}.

+ Ta có:

dfrac{p-2sqrt{p}}{sqrt{p}-2}=dfrac{(sqrt p)^2-2.sqrt{p}}{sqrt{p}-2}=dfrac{sqrt{p}(sqrt{p}-2)}{sqrt{p}-2}=sqrt{p}.

Bài 55 (trang 30 SGK Toán 9 Tập 1)

Phân tích thành nhân tử (với a, b,x, y là các số không âm)

a. ab+bsqrt{a}+sqrt{a}+1

b, sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

Gợi ý đáp án

a. ab+bsqrt{a}+sqrt{a}+1

Ta có:

ab+bsqrt{a}+sqrt{a}+1=(ab+bsqrt{a})+(sqrt{a}+1)

=(ba+bsqrt{a})+(sqrt{a}+1)

=[(bsqrt a).sqrt a+ bsqrt a.1]+(sqrt a + 1)

=bsqrt{a}(sqrt{a}+1)+(sqrt{a}+1)

=(sqrt{a}+1)(bsqrt{a}+1).

b, sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

Ta có:

sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

=[(sqrt x)^3-(sqrt y)^3]+ (sqrt{x.xy}-sqrt{y.xy})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2]

+ (sqrt{x}.sqrt{xy}-sqrt{y}.sqrt{xy})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2] + sqrt{xy}.(sqrt{x}-sqrt{y})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2+sqrt{xy}]

=(sqrt x-sqrt y).[(sqrt x)^2 + 2sqrt x.sqrt y+(sqrt y)^2]

=(sqrt x-sqrt y).(sqrt x+sqrt y)^2.

Bài 56 (trang 30 SGK Toán 9 Tập 1)

a. 3sqrt{5};,,,2sqrt{6};,,,sqrt{29};,,, 4sqrt{2}

b. 6sqrt{2};,,, sqrt{38};,,,3sqrt{7};,,, 2sqrt{14}.

Gợi ý đáp án

Sắp xếp theo thứ tự tăng dần:

a. 3sqrt{5};,,,2sqrt{6};,,,sqrt{29};,,, 4sqrt{2}

Ta có:

left{ matrix{
3sqrt 5 = sqrt {{3^2}.5} = sqrt {9.5} = sqrt {45} hfill cr
2sqrt 6 = sqrt {{2^2}.6} = sqrt {4.6} = sqrt {24} hfill cr
4sqrt 2 = sqrt {{4^2}.2} = sqrt {16.2} = sqrt {32} hfill cr} right.

Vì: 24 < 29 < 32 < 45 Leftrightarrow sqrt{24}<sqrt{29}<sqrt{32}<sqrt{45}

Leftrightarrow 2sqrt{6}<sqrt{29}< 4sqrt{2}< 3sqrt{5}

b. 6sqrt{2};,,, sqrt{38};,,,3sqrt{7};,,, 2sqrt{14}.

Vì: 38 < 56 < 63 <72Leftrightarrow sqrt{38}<sqrt{56}<sqrt{63}<sqrt{72}

Khám Phá Thêm:   Soạn bài Ôn tập trang 36 - Chân trời sáng tạo 6 Ngữ văn lớp 6 trang 36 sách Chân trời sáng tạo tập 1

Leftrightarrow sqrt{38}< 2sqrt{14}<3sqrt{7}< 6sqrt{2}

Bài 57 (trang 30 SGK Toán 9 Tập 1)

Hãy chọn câu trả lời đúng.

sqrt {25x} - sqrt {16x} = 9 khi x bằng

(A) 1;

(B) 3;

(C) 9;

(D) 81.

Hãy chọn câu trả lời đúng.

Gợi ý đáp án

Ta có:

sqrt{25x}-sqrt{16x}=9

sqrt{5^2.x}-sqrt{4^2.x}=9

Leftrightarrow 5sqrt{x}-4sqrt{x}=9

Leftrightarrow (5-4)sqrt{x}=9

Leftrightarrow sqrt{x}=9

Leftrightarrow (sqrt{x})^2=9^2

Leftrightarrow x=81

Chọn đáp án D. 81

Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai

I. Khử mẫu của biểu thức lấy căn

* Khi biến đổi biểu thức chứa căn thức bậc hai, người ta có thể sử dụng phép khử mẫu của biểu thức lấy căn.

* Một cách tổng quát:

Với các biểu thức A, B mà A.B ≥ 0 và B ≠ 0, ta có sqrt {frac{A}{B}}  = frac{{sqrt {AB} }}{{left| B right|}}

* Ví dụ 1: Khử mẫu của biểu thức lấy căn:

a) sqrt {frac{7}{{50}}} b) 5xysqrt {frac{6}{{xy}}} với x > 0 và y > 0

Lời giải:

a) sqrt {frac{7}{{50}}}  = sqrt {frac{7}{{25.2}}}  = frac{1}{5}.sqrt {frac{7}{2}}  = frac{1}{5}.frac{{sqrt {7.2} }}{2} = frac{{sqrt {14} }}{{10}}

b) 5xysqrt {frac{6}{{xy}}}  = 5xyfrac{{sqrt {6xy} }}{{left| {xy} right|}}

Vì x > 0 và y > 0 nên x.y > 0; ta có: 5xysqrt {frac{6}{{xy}}}  = 5xy.frac{{sqrt {6xy} }}{{xy}} = 5sqrt {6xy}

II. Trục căn thức ở mẫu

* Hai biểu thức sqrt x  + sqrt y và sqrt x  - sqrt y left( {x ge 0;y ge 0} right) được gọi là hai biểu thức liên hợp. Tổng quát: hai biểu thức sqrt[n]{{a + bsqrt c }} và sqrt[n]{{a - bsqrt c }} trong đó a, b, c là các biểu thức gọi là hai biểu thức liên họp bậc n.

* Trục căn thức ở mẫu:

a) Với các biểu thức A, B mà B > 0, ta có: frac{A}{{sqrt B }} = frac{{Asqrt B }}{B}

b) Với các biểu thức A, B, C mà A ge 0;A ne {B^2} ta có: frac{C}{{sqrt A  pm B}} = frac{{Cleft( {sqrt A  mp B} right)}}{{A - {B^2}}}

c) Với các biểu thức A, B, C mà A ge 0;B ge 0;A ne B ta có:

frac{C}{{sqrt A  pm sqrt B }} = frac{{Cleft( {sqrt A  mp sqrt B } right)}}{{A - B}}

Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) Giải SGK Toán 9 Tập 1 (trang 29, 30) tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Cảm nghĩ về một nhân vật có tài trong những câu chuyện em đã học hoặc đã nghe Trao đổi Tài năng con người – Tiếng Việt 4 Cánh diều
Next Post: Viết đoạn văn về Vương quốc Tương Lai theo trí tưởng tượng của em Luyện tập viết đoạn văn tưởng tượng – Tiếng Việt 4 Cánh diều »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích