Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương Giải SGK Toán 9 Tập 1 (trang 14, 15, 16)

Tháng 12 30, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương Giải SGK Toán 9 Tập 1 (trang 14, 15, 16) tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán lớp 9 trang 14, 15, 16 tập 1 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi và 11 bài tập trong SGK bài 3 Liên hệ giữa phép nhân và phép khai phương.

Giải Toán 9 Bài 3 tập 1 Liên hệ giữa phép nhân và phép khai phương được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán. Giải Toán lớp 9 trang 14, 15, 16 là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Mục Lục Bài Viết

  • Lý thuyết Liên hệ giữa phép nhân và phép khai phương
  • Trả lời câu hỏi trang 13, 14 Toán 9 tập 1
    • Câu hỏi 1
    • Câu hỏi 2
    • Câu hỏi 3
    • Câu hỏi 4
  • Giải bài tập Toán 9 trang 14, 15, 16 tập 1
    • Bài 17 (trang 14 SGK Toán 9 Tập 1)
    • Bài 18 (trang 14 SGK Toán 9 Tập 1)
    • Bài 19 (trang 15 SGK Toán 9 Tập 1)
    • Bài 20 (trang 15 SGK Toán 9 Tập 1)
    • Bài 21 (trang 15 SGK Toán 9 Tập 1)
  • Giải bài tập toán 9 trang 15, 16 tập 1: Luyện tập
    • Bài 22 (trang 15 SGK Toán 9 Tập 1)
    • Bài 23 (trang 15 SGK Toán 9 Tập 1)
    • Bài 24 (trang 15 SGK Toán 9 Tập 1)
    • Bài 25 (trang 16 SGK Toán 9 Tập 1)
    • Bài 26 (trang 16 SGK Toán 9 Tập 1)
    • Bài 27 (trang 16 SGK Toán 9 Tập 1)

Lý thuyết Liên hệ giữa phép nhân và phép khai phương

1. Định lí. Với các số a và b không âm ta có: Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương Giải SGK Toán 9 Tập 1 (trang 14, 15, 16)

Khám Phá Thêm:   Tiếng Anh 6 Unit 9: A Closer Look 2 Soạn Anh 6 trang 29, 30 sách Kết nối tri thức với cuộc sống - Tập 2

1. Định lí

Với các số a và b không âm ta có:Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương Giải SGK Toán 9 Tập 1 (trang 14, 15, 16)

Lưu ý:

+) Với hai biểu thức không âm A và B, ta cũng có:sqrt{A.B}=sqrt A. sqrt B

+) Nếu không có điều kiện A và B không âm thì không thể viết đằng thức trên.

Chẳng hạn sqrt{(-9).(-4)} được xác định nhưng đẳng thức sqrt {(-9)}. sqrt {(-4)} không xác định.

2. Áp dụng

a. Quy tắc khai phương một tích

Muốn khai phương một tích của những số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau.

+ Mở rộng: Với các số a, b,c không âm ta có: sqrt{a.b.c}=sqrt a. sqrt b.sqrt c

b. Quy tắc nhân các căn bậc hai

Muốn nhân các căn bậc hai của những số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó.

+ Mở rộng: Với các số a, b,c không âm ta có:sqrt a. sqrt b .sqrt c=sqrt{a.b.c}.

+ Với biểu thức A không âm, ta có: {left( {sqrt A } right)^2} = sqrt {{A^2}} = A

3. Dạng toán cơ bản

Dạng 1: Thực hiện phép tính

Sử dụng: Với hai biểu thức không âm A và B, ta có:sqrt{A.B}=sqrt A. sqrt B

Ví dụ:sqrt {32} + sqrt 8 = sqrt {16.2} + sqrt {4.2} = sqrt {16} .sqrt 2 + sqrt 4 .sqrt 2 = 4sqrt 2 + 2sqrt 2 = 6

Dạng 2: Rút gọn biểu thức

Sử dụng: Với hai biểu thức không âm A và B, ta có: sqrt{A.B}=sqrt A. sqrt B

Ví dụ:

begin{array}{l}
sqrt {9left( {{x^2} - 2x + 1} right)} = sqrt 9 .sqrt {{x^2} - 2x + 1} \
= 3.sqrt {{{left( {x - 1} right)}^2}} = 3left| {x - 1} right|
end{array}

Trả lời câu hỏi trang 13, 14 Toán 9 tập 1

Câu hỏi 1

Tính và so sánh: sqrt {16.25} và sqrt {16} .sqrt {25}

Hướng dẫn giải

Ta có: left{ {begin{array}{*{20}{c}}
  {sqrt {16.25}  = sqrt {400}  = sqrt {{{20}^2}}  = 20} \ 
  {sqrt {16} .sqrt {25}  = 4.5 = 20} 
end{array}} right. Rightarrow sqrt {16.25}  = sqrt {16} .sqrt {25}

Câu hỏi 2

Tính:

a. sqrt {0,16.0,64.225} b. sqrt {250.360}

Hướng dẫn giải

a. sqrt {0,16.0,64.225}  = sqrt {0,16} .sqrt {0,64} .sqrt {225}

= sqrt {0,{4^2}} .sqrt {0,{8^2}} .sqrt {{{15}^2}}  = 0,4.0,8.15 = 4,8

b. sqrt {250.360}  = sqrt {25.36.100}  = sqrt {25} .sqrt {36} .sqrt {100}  = 5.6.10 = 300

Câu hỏi 3

Tính:

a. sqrt 3 .sqrt {75}

b. sqrt {20} .sqrt {72} .sqrt {4,9}

Hướng dẫn giải

a. sqrt 3 .sqrt {75}  = sqrt {3.75}  = sqrt {3.3.25}  = sqrt {{{left( {3.5} right)}^2}}  = 15

b. sqrt {20} .sqrt {72} .sqrt {4,9}  = sqrt {20.72.4,9}  = sqrt {2.2.36.49}  = sqrt {{{left( {2.6.7} right)}^2}}  = 2.6.7 = 84

Câu hỏi 4

Rút gọn các biểu thức sau (với a và b không âm):

a. sqrt {3{a^3}} .sqrt {12a}

b. sqrt {2a.32a{b^2}}

Hướng dẫn giải

a. sqrt {3{a^3}} .sqrt {12a}  = sqrt {3{a^3}.12a}  = sqrt {36.{a^4}}  = sqrt {{{left( {6{a^2}} right)}^2}}  = 6{a^2}

b. sqrt {2a.32a{b^2}}  = sqrt {64{a^2}{b^2}}  = sqrt {{{left( {8ab} right)}^2}}  = 8ab (Do a và b không âm)

Giải bài tập Toán 9 trang 14, 15, 16 tập 1

Bài 17 (trang 14 SGK Toán 9 Tập 1)

Áp dụng quy tắc khai phương một tích, hãy tính:

a) sqrt{0,09.64};

b) sqrt{2^{4}.(-7)^{2}};

c) sqrt{12,1.360};

d)sqrt{2^{2}.3^{4}}.

Gợi ý đáp án

a) Ta có:

sqrt{0,09.64}=sqrt{0,09}.sqrt{64}

=sqrt{(0,3)^2}.sqrt{8^2}

=|0,3|. |8|

=0,3.8

=2,4.

b) Ta có:

sqrt{2^{4}.(-7)^{2}}=sqrt{2^4}.sqrt{(-7)^2}

=sqrt{(2^2)^2}.sqrt{(-7)^2}

=sqrt{4^2}.left| -7 right|

=|4|.|-7|

=4.7

=28.

c) Ta có:

sqrt{12,1.360}=sqrt{12,1.(10.36)}

=sqrt{(12,1.10).36}

=sqrt{121.36}

=sqrt{121}.sqrt{36}

=sqrt{11^2}.sqrt{6^2}

=|11|.|6|

Khám Phá Thêm:   Bài tập ôn hè môn Ngữ văn lớp 7 năm 2024 - 2025 Ôn tập hè môn Ngữ văn 7 lên lớp 8

=11.6

=66.

d) Ta có:

sqrt{2^{2}.3^{4}}=sqrt{2^2}.sqrt{3^4}

=sqrt{2^{2}}.sqrt{(3^2)^2}

=sqrt{ 2^2}.sqrt{9^2}

=|2|.|9|

=2.9

=18.

Bài 18 (trang 14 SGK Toán 9 Tập 1)

Áp dụng quy tắc nhân các căn bậc hai, hãy tính:

Áp dụng quy tắc nhân các căn bậc hai, hãy tính:

a) sqrt{7}.sqrt{63};

b) sqrt{2,5}.sqrt{30}.sqrt{48};

c) sqrt{0,4}.sqrt{6,4};

d) sqrt{2,7}.sqrt{5}.sqrt{1,5}.

Gợi ý đáp án

a) Ta có:

sqrt{7}.sqrt{63}=sqrt{7.63} =sqrt{7.(7.9)} =sqrt{(7.7).9}

=sqrt{7^2. 3^2} =sqrt{7^2}.sqrt{3^2}

=|7|.|3|=7.3 =21.

b) Ta có:

sqrt{2,5}.sqrt{30}.sqrt{48}=sqrt{2,5.30.48}

=sqrt{2,5.(10.3).(16.3)}

=sqrt{(2,5.10).(3.3).16}

=sqrt{25.3^2.4^2}

=sqrt{25}.sqrt{3^2}.sqrt{4^2}

=sqrt{5^2}.sqrt{3^2}.sqrt{4^2}

=|5|.|3|.|4|=5.3.4 =60.

c) Ta có:

sqrt{0,4}.sqrt{6,4}=sqrt{0,4.6,4}=sqrt{0,4.(0,1.64)}

=sqrt{(0,4.0,1).64}=sqrt{0,04.64}

=sqrt{0,04}.sqrt{64}=sqrt{0,2^2}.sqrt{8^2}

=|0,2|.|8|=0,2.8 =1,6.

d)

sqrt{2,7}.sqrt{5}.sqrt{1,5}=sqrt{2,7.5.1,5}

=sqrt{(27.0,1).5.(0,5.3)}

=sqrt{(27.3).(0,1.5).0,5}

=sqrt{81.0,5.0,5} =sqrt{81.0,5^2}

=sqrt{81}.sqrt{0,5^2}=sqrt{9^2}.sqrt{0,5^2}

=|9|.|0,5|=9.0,5=4,5.

Bài 19 (trang 15 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a) sqrt{0,36a^{2}} với a <0;

b) sqrt{a^4.(3-a)^2} với a ≥ 3;

c) sqrt{27.48(1 - a)^{2}} với a > 1;

d)dfrac{1}{a - b}. sqrt{a^{4}.(a - b)^{2}} với a > b.

Gợi ý đáp án

a) Ta có:

sqrt{0,36a^{2}} = sqrt{0,36}.sqrt{a^{2}}

=sqrt{0,6^2}.sqrt{a^2}

= 0,6.│a│

= 0,6. (-a)=-0,6a

(Vì a < 0 nên │a│= -a).

b)

Vì a^{2} ≥ 0 nên left| a^2 right|= a^{2}.

Vì a ge 3 hay 3 le a nên 3 – a ≤ 0.

Rightarrow│3 - a│= -(3-a)=-3+a=a - 3.

Ta có: sqrt{a^{4}.(3 - a)^{2}}= sqrt{a^{4}}. sqrt{(3 - a)^{2}}

=sqrt{(a^2)^2}.sqrt{(3-a)^2}

= left| a^{2}right|.left| 3 - a right|.

= a^2.(a-3)=a^3-3a^2.

c)

Vì a > 1 hay 1<a nên 1 – a < 0.

Rightarrow left| 1 - aright| =-(1-a)=-1+a= a -1.

Ta có: sqrt{27.48(1 - a)^{2}} = sqrt{27.(3.16).(1 - a)^{2}}

=sqrt{(27.3).16.(1-a)^2}

= sqrt{81.16.(1 - a)^{2}}

=sqrt {81} .sqrt {16} .sqrt {{{(1 - a)}^2}}

=sqrt{9^2}.sqrt{4^2}.sqrt{(1-a)^2}

= 9.4. left| {1 - a} right| = 36.left| {1 - a} right|

= 36.(a-1)=36a-36.

d)

Vì a^2 ge 0, với mọi a nên left|a^2 right| = a^2.

Vì a > b nên a -b > 0. Do đóleft|a - bright|= a - b.

Ta có: dfrac{1}{a - b} . sqrt{a^{4}.(a - b)^{2}}

= dfrac{1}{a - b} . sqrt{a^{4}}.sqrt{(a - b)^{2}}

= dfrac{1}{a - b} . {left| {{a^2}} right|.left| {a - b} right|}

=dfrac{1}{a - b} . a^{2}.(a - b)

=a^2

Bài 20 (trang 15 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a) sqrt{dfrac{2a}{3}}. sqrt{dfrac{3a}{8}} với a ≥ 0;

b) sqrt{13a}.sqrt{dfrac{52}{a}} với a > 0;

c) sqrt{5a}.sqrt{45a} - 3a với a ≥ 0;

d)(3 - a)^{2}- sqrt{0,2}.sqrt{180a^{2}}.

Gợi ý đáp án

a) Ta có:

sqrt{dfrac{2a}{3}}.sqrt{dfrac{3a}{8}}=sqrt{dfrac{2a}{3}.dfrac{3a}{8}}=sqrt{dfrac{2a.3a}{3.8}} =sqrt{dfrac{a^2}{4}}=sqrt{dfrac{a^2}{2^2}}

=sqrt{left(dfrac{a}{2}right)^2}=left| dfrac{a}{2}right| = dfrac{a}{2}.

(Vì a ge 0 nên dfrac{a}{2} ge 0 Rightarrow left| dfrac{a}{2} right| = dfrac{a}{2}).

b) Ta có:

sqrt{13a}.sqrt{dfrac{52}{a}}=sqrt{13a.dfrac{52}{a}}=sqrt{dfrac{13a.52}{a}}

=sqrt{dfrac{13a.(13.4)}{a}}=sqrt{dfrac{(13.13).4.a}{a}}

=sqrt{13^2.4}=sqrt{13^2}.sqrt{4}

=sqrt{13^2}.sqrt{2^2}=13.2

=26 (vì a>0)

c)

Do ageq 0 nên bài toán luôn được xác định.

Ta có:sqrt{5a}.sqrt{45a}- 3a=sqrt{5a.45a}-3a

=sqrt{(5.a).(5.9.a)}-3a

=sqrt{(5.5).9.(a.a)}-3a

=sqrt{5^2.3^2.a^2}-3a

=sqrt{5^2}.sqrt{3^2}.sqrt{a^2}-3a

=5.3.left|aright|-3a=15 left|a right| -3a.

=15a – 3a = (15-3)a =12a.

(vì a ge 0 nên left| a right| = a).

d) Ta có:

(3 - a)^{2}- sqrt{0,2}.sqrt{180a^{2}}=(3 - a)^{2}-sqrt{0,2.180a^2}

= (3-a)^2-sqrt{0,2.(10.18).a^2}

=(3-a)^2-sqrt{(0,2.10).18.a^2}

=(3-a)^2-sqrt{2.18.a^2}

=(3-a)^2-sqrt{36a^2}

=(3-a)^2-sqrt{36}.sqrt{a^2}

=(3-a)^2-sqrt{6^2}.sqrt{a^2}

=(3-a)^2-6.left|aright|.

+) TH1: Nếu ageq 0Rightarrow |a|=a.

Do đó: (3 - a)^{2}- 6left|aright|=(3-a)^2-6a

=(3^2-2.3.a+a^2)-6a

=(9-6a+a^2)-6a

=9-6a+a^2-6a

=a^2+(-6a-6a)+9

=a^2+(-12a)+9

=a^2-12a+9.

+) TH2: Nếu a<0Rightarrow |a|=-a.

Do đó: (3 - a)^{2}- 6left|aright| =(3-a)^2-6.(-a)

=(3^2-2.3.a+a^2)-(-6a)

=(9-6a+a^2)+6a

=9-6a+a^2+6a

=a^2+(-6a+6a)+9

=a^2+9.

Vậy (3 - a)^{2}- sqrt{0,2}.sqrt{180a^{2}}=a^2-12a+9, nếu a ge 0.

(3 - a)^{2}- sqrt{0,2}.sqrt{180a^{2}}=a^2+9, nếu a <0.

Bài 21 (trang 15 SGK Toán 9 Tập 1)

Khai phương tích 12.30.40 được:

(A) 1200; (B) 120; (C) 12; (D) 240

Hãy chọn kết quả đúng.

Gợi ý đáp án

Ta có:

sqrt{12.30.40}=sqrt{(3.4).(3.10).(4.10)}

=sqrt{(3.3).(4.4).(10.10)}

=sqrt{3^2.4^2.10^2}

=sqrt{3^2}.sqrt{4^2}.sqrt{10^2}

=3.4.10=120.

Vậy đáp án đúng là (B). 120

Giải bài tập toán 9 trang 15, 16 tập 1: Luyện tập

Bài 22 (trang 15 SGK Toán 9 Tập 1)

Biến đổi các biểu thức dưới dấu căn thành dạng tích rồi tính:

a) sqrt{13^{2}- 12^{2}};

b) sqrt{17^{2}- 8^{2}};

c) sqrt{117^{2} - 108^{2}};

d) sqrt{313^{2} - 312^{2}}.

Gợi ý đáp án

Câu a: Ta có:

sqrt{13^{2}- 12^{2}}=sqrt{(13+12)(13-12)}

=sqrt{25.1}=sqrt{25}

=sqrt{5^2}=|5|=5.

Câu b: Ta có:

sqrt{17^{2}- 8^{2}}=sqrt{(17+8)(17-8)}

=sqrt{25.9}=sqrt{25}.sqrt{9}

=sqrt{5^2}.sqrt{3^2}=|5|.|3|.

=5.3=15.

Câu c: Ta có:

sqrt{117^{2} - 108^{2}} =sqrt{(117-108)(117+108)}

=sqrt{9.225} =sqrt{9}.sqrt{225}

=sqrt{3^2}.sqrt{15^2}=|3|.|15|

=3.15=45.

Câu d: Ta có:

sqrt{313^{2} - 312^{2}}=sqrt{(313-312)(313+312)}

=sqrt{1.625}=sqrt{625}

=sqrt{1.625}=sqrt{625}

Bài 23 (trang 15 SGK Toán 9 Tập 1)

Chứng minh.

Khám Phá Thêm:   Đáp án trắc nghiệm tập huấn môn Vật lí 12 sách Chân trời sáng tạo Tập huấn sách giáo khoa lớp 12 năm 2024 - 2025

a) (2 - sqrt{3})(2 + sqrt{3}) = 1;

b) (sqrt{2006} - sqrt{2005}) và (sqrt{2006} + sqrt{2005}) là hai số nghịch đảo của nhau.

Gợi ý đáp án

Câu a: Ta có:

(sqrt{2006} - sqrt{2005}) và (sqrt{2006} + sqrt{2005})

Câu b:

Ta tìm tích của hai số (sqrt{2006} - sqrt{2005}) và (sqrt{2006} + sqrt{2005})

Ta có:

(sqrt{2006} + sqrt{2005}).(sqrt{2006} - sqrt{2005})

= (sqrt{2006})^2-(sqrt{2005})^2

=2006-2005=1

Do đó (sqrt{2006} + sqrt{2005}).(sqrt{2006} - sqrt{2005})=1

Leftrightarrow sqrt{2006}-sqrt{2005}=dfrac{1}{sqrt{2006}+sqrt{2005}}

Vậy hai số trên là nghịch đảo của nhau.

Bài 24 (trang 15 SGK Toán 9 Tập 1)

Rút gọn và tìm giá trị (làm tròn đến chữ số thập phân thứ 3) của các căn thức sau:

a) sqrt{4(1 + 6x + 9x^{2})^{2}} tại x = - sqrt 2 ;

b)sqrt{9a^{2}(b^{2} + 4 - 4b)} tại a = - 2;,,b = - sqrt 3 .

Gợi ý đáp án

a) Ta có:

sqrt{4(1 + 6x + 9x^{2})^{2}} =sqrt {4}. sqrt {{{(1 + 6x + 9{x^2})}^2}}

=sqrt{4}.sqrt{(1+2.3x+3^2.x^2)^2}

=sqrt{2^2}.sqrt{left[1^2+2.3x+(3x)^2right]^2}

=2.sqrt {{{left[ {{{left( {1 + 3x} right)}^2}} right]}^2}}

=2.left|(1+3x)^2right|

=2(1+3x)^2.

(Vì (1+3x)^2 > 0 với mọi x nên left|(1+3x)^2right|=(1+3x)^2 )

Thay x = - sqrt 2vào biểu thức rút gọn trên, ta được:

2{left[ {1 + 3.(-sqrt 2) } right]^2}=2(1-3sqrt{2})^2.

Bấm máy tính, ta được: 2{left( {1 - 3sqrt 2 } right)^2} approx 21,029.

b) Ta có:

sqrt{9a^{2}(b^{2} + 4 - 4b)} =sqrt{3^2.a^2.(b^2-4b+4)}

=sqrt{(3a)^2.(b^2-2.b.2+2^2)}

=sqrt{(3a)^2}. sqrt{(b-2)^2}

=left|3aright|. left|b-2right|

Thay a = -2 và b = - sqrt 3 vào biểu thức rút gọn trên, ta được:

left| 3.(-2)right|. left| -sqrt{3}-2right| =left|-6right|.left|-(sqrt{3}+2) right|

=6.(sqrt{3}+2)=6sqrt{3}+12.

Bấm máy tính, ta được: 6sqrt{3}+12 approx 22,392.

Bài 25 (trang 16 SGK Toán 9 Tập 1)

a) sqrt{16x}= 8;

b) sqrt{4x} = sqrt{5};

c) sqrt{9(x - 1)} = 21;

d) sqrt{4(1 - x)^{2}}- 6 = 0.

Gợi ý đáp án

a) Điều kiện: x ge 0

sqrt {16x} = 8 Leftrightarrow {left( {sqrt {16x} } right)^2} = {8^2} Leftrightarrow 16x = 64

Leftrightarrow x = dfrac{{64}}{{16}} Leftrightarrow x = 4 (thỏa mãn điều kiện)

Vậy x=4.

Cách khác:

begin{array}{l}
sqrt {16x} = 8 Leftrightarrow sqrt {16} .sqrt x = 8\
Leftrightarrow 4sqrt x = 8 Leftrightarrow sqrt x = 2\
Leftrightarrow x = {2^2} Leftrightarrow x = 4
end{array}

b) Điều kiện: 4x ge 0 Leftrightarrow x ge 0

sqrt {4x} = sqrt 5 Leftrightarrow {left( {sqrt {4x} } right)^2} = {left( {sqrt 5 } right)^2}

Leftrightarrow 4x = 5 Leftrightarrow x = dfrac{5}{4} (thỏa mãn điều kiện)

Vậy x=dfrac{5}{4}.

c) Điều kiện: 9left( {x - 1} right) ge 0 Leftrightarrow x - 1 ge 0 Leftrightarrow x ge 1

sqrt {9left( {x - 1} right)} = 21 Leftrightarrow 3sqrt {x - 1} = 21

Leftrightarrow sqrt {x - 1} = 7 Leftrightarrow x - 1 = 49 Leftrightarrow x = 50 (thỏa mãn điều kiện)

Vậy x=50.

Cách khác:

begin{array}{l}
sqrt {9left( {x - 1} right)} = 21 Leftrightarrow 9left( {x - 1} right) = {21^2}\
Leftrightarrow 9left( {x - 1} right) = 441 Leftrightarrow x - 1 = 49\
Leftrightarrow x = 50
end{array}

d) Điều kiện: x in R (vì 4.(1-x)^2ge 0 với mọi x)

sqrt {4{{left( {1 - x} right)}^2}} - 6 = 0 Leftrightarrow 2sqrt {{{left( {1 - x} right)}^2}} = 6 Leftrightarrow left| {1 - x} right| = 3

Leftrightarrow left[ begin{array}{l}1 - x = 3\1 - x = - 3end{array} right. Leftrightarrow left[ begin{array}{l}x = - 2\x = 4end{array} right.

Vậy x=-2;x=4.

Bài 26 (trang 16 SGK Toán 9 Tập 1)

a) So sánh sqrt{25 + 9} và sqrt{25} + sqrt{9};

b) Với a > 0 và b > 0, chứng minh sqrt{a + b} < sqrt{a}+sqrt{b}.

Gợi ý đáp án

a) Ta có:

+) sqrt{25 + 9}=sqrt{34}.

+) sqrt{25} + sqrt{9}=sqrt{5^2}+sqrt{3^2}=5+3

=8=sqrt{8^2}=sqrt{64}.

Vì 34<64 nên sqrt{34}<sqrt{64}

Vậy sqrt{25 + 9}<sqrt{25} + sqrt{9}

b) Với a>0,b>0, ta có

+), (sqrt{a + b})^{2} = a + b.

+) ,(sqrt{a} + sqrt{b})^{2}= (sqrt{a})^2+ 2sqrt a .sqrt b +(sqrt{b})^2

= a +2sqrt{ab} + b

=(a+b) +2sqrt{ab}.

Vì a > 0, b > 0 nên sqrt{ab} > 0 Leftrightarrow 2sqrt{ab} >0

Leftrightarrow (a+b) +2sqrt{ab} > a+b

Leftrightarrow (sqrt{a}+sqrt{ b})^2 > (sqrt{a+b})^2

Leftrightarrow sqrt{a}+sqrt{b}>sqrt{a+b} (đpcm)

Bài 27 (trang 16 SGK Toán 9 Tập 1)

So sánh

a) 4 và 2sqrt{3};

b) -sqrt{5} và -2

Gợi ý đáp án

a) Ta có:

begin{array}{l}
4 > 3 Leftrightarrow sqrt 4 > sqrt 3 \
Leftrightarrow 2 > sqrt 3 \
Leftrightarrow 2.2 > 2.sqrt 3 \
Leftrightarrow 4 > 2sqrt 3
end{array}

Cách khác:

Ta có:

left{ matrix{
{4^2} = 16 hfill cr
{left( {2sqrt 3 } right)^2} = {2^2}.{left( {sqrt 3 } right)^2} = 4.3 = 12 hfill cr} right.

Vì 16> 12 Leftrightarrow sqrt {16} > sqrt 12

Hay 4 > 2sqrt 3.

b) Vì 5>4 Leftrightarrow sqrt 5 > sqrt 4

Leftrightarrow sqrt 5 > 2

Leftrightarrow -sqrt 5 < -2 (Nhân cả hai vế bất phương trình trên với -1)

Vậy

Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương Giải SGK Toán 9 Tập 1 (trang 14, 15, 16) tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Lịch sử 6 Bài 1: Lịch sử là gì? Cánh diều Soạn Sử 6 trang 5 sách Cánh diều
Next Post: Soạn bài Về thăm quê (trang 13) Tiếng Việt lớp 3 Kết nối tri thức Tập 1 – Tuần 1 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích