Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Công thức tính độ dài đường trung tuyến Ôn tập Toán 10

Tháng 9 3, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Công thức tính độ dài đường trung tuyến Ôn tập Toán 10 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Trong toán học, đường trung tuyến là một đường thẳng đi qua trung điểm của một cạnh tam giác và song song với cạnh còn lại. Đường trung tuyến là một khái niệm quan trọng trong lĩnh vực tam giác và được áp dụng rộng rãi trong các bài toán về tam giác và hình học. Để tính độ dài của đường trung tuyến, chúng ta sử dụng công thức được xác định dựa trên định lí của đường trung tuyến và các dữ kiện có sẵn trong tam giác. Công thức này giúp chúng ta dễ dàng tính toán và xác định các thông số cần thiết trong bài toán. Trong bài viết này, chúng ta sẽ điểm lại công thức tính độ dài đường trung tuyến và áp dụng nó vào các bài tập ôn tập toán lớp 10. Bạn sẽ có cơ hội ôn lại kiến thức đã học và củng cố kỹ năng giải bài toán toán học với công thức này. Hãy cùng bắt đầu điểm lại và ôn tập công thức tính độ dài đường trung tuyến trong bài viết dưới đây!

Công thức tính độ dài đường trung tuyến là tài liêu vô cùng hữu ích mà thcshuynhphuoc-np.edu.vn muốn giới thiệu đến quý thầy cô cùng các em lớp 10 tham khảo.

Tài liệu tổng hợp toàn bộ kiến thức về đường trung tuyến là gì, tính chất đường trung tuyến trong tam giác, công thức tính đường trung tuyến và các dạng bài kèm theo. Qua đó giúp các em học sinh nhanh chóng nắm vững kiến thức để giải nhanh các bài Toán 10.

Mục Lục Bài Viết

  • 1. Đường trung tuyến là gì?
  • 2. Đường trung tuyến của tam giác
  • 3. Tính chất đường trung tuyến trong tam giác
  • 4. Công thức đường trung tuyến
  • 5. Bài tập về cách tính độ dài đường trung tuyến

1. Đường trung tuyến là gì?

– Đường trung tuyến của một đoạn thẳng là một đường thẳng đi qua trung điểm của đoạn thẳng đó.

2. Đường trung tuyến của tam giác

– Đường trung tuyến của một tam giác là đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện trong hình học phẳng. Mỗi tam giác có 3 đường trung tuyến.

3. Tính chất đường trung tuyến trong tam giác

– Ba đường trung tuyến của tam giác cùng đi qua một điểm. Điểm đó cách đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh ấy.

Khám Phá Thêm:   Soạn bài Quan thanh tra Cánh diều Ngữ văn lớp 12 trang 50 sách Cánh diều tập 1

Giao điểm của ba đường trung tuyến gọi là trọng tâm.

Ví dụ:

Gọi G là trọng tâm của tam giác ABC, ABC có các trung tuyến AI, BM, CN thì ta sẽ có biểu thức:

Công thức tính độ dài đường trung tuyến Ôn tập Toán 10

Đường trung tuyến trong tam giác vuông

– Tam giác vuông là một trường hợp đặc biệt của tam giác, trong đó, tam giác sẽ có một góc có độ lớn là 90 độ, và hai cạnh tạo nên góc này vuông góc với nhau.

– Do đó, đường trung tuyến của tam giác vuông sẽ có đầy đủ những tính chất của một đường trung tuyến tam giác.

Định lý 1: Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Định lý 2: Một tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh đó thì tam giác ấy là tam giác vuông.

Ví dụ:

Tam giác ABC vuông ở A, độ dài đường trung tuyến AM sẽ bằng MB, MC và bằng 1/2 BC

Ngược lại nếu AM = 1/2 BC thì tam giác ABC sẽ vuông ở A.

4. Công thức đường trung tuyến

begin{aligned}
&m_{a}=sqrt{frac{b^{2}+c^{2}}{2}-frac{a^{2}}{4}} \
&m_{b}=sqrt{frac{a^{2}+c^{2}}{2}-frac{b^{2}}{4}} \
&m_{c}=sqrt{frac{b^{2}+a^{2}}{2}-frac{c^{2}}{4}}
end{aligned}

Trong đó: a, b ,c lần lượt là các cạnh trong tam giác

ma, mb, mc lần lượt là những đường trung tuyến trong tam giác

5. Bài tập về cách tính độ dài đường trung tuyến

Bài 1: Cho tam giác ABC cân ở A có AB = AC = 17cm, BC= 16cm. Kẻ trung tuyến AM.

a) Chứng minh: AM ⊥ BC;

b) Tính độ dài AM.

Hướng dẫn giải

a. Ta có AM là đường trung tuyến tam giác ABC nên MB = MC

Mặt khác tam giác ABC là tam giác cân tại A

Suy ra AM vừa là đường trung tuyến vừa là đường cao

Vậy AM vuông góc với BC

b. Ta có

BC = 16cm nên BM = MC = 8cm

AB = AC = 17cm

Xét tam giác AMC vuông tại M

Áp dụng định lý Pitago ta có:

AC2 = AM2 + MC2 ⇒ 172 = AM2 + 82 ⇒ AM2 = 172 – 82 = 225 ⇒ AM = 15cm

Bài 2: Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng GA = GB = GC.

Hướng dẫn giải

Gọi AD, CE, BF là các đường trung tuyến tam giác ABC hay D, E, F lần lượt là trung điểm cạnh BC, AB, AC

Ta có AD là đường trung tuyến tam giác ABC nên AG=frac{2}{3}AD(1)

CE là đường trung tuyến tam giác ABC nên CG=frac{2}{3}CE (2)

BF là đường trung tuyến tam giác ABC nên BG=frac{2}{3}BF(3)

Ta có tam giác BAC đều nên dễ dàng suy ra AD = BF = CE (4)

Từ 1, 2, 3, 4 suy ra AG = BG = CG

Khám Phá Thêm:   Đề cương ôn thi học kì 2 môn Tin học 7 năm 2023 - 2024 (Sách mới) Ôn tập cuối kì 2 Tin học 7 sách KNTT, CTST, Cánh diều

Bài 3: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho AE = 1/3AC. Tia BE cắt CD ở M. Chứng minh :

a) M là trung điểm của CD

b) AM = dfrac{1}{2}BC.

Hướng dẫn giải

a. Xét tam giác BDC có AB = AD suy ra AC là đường trung tuyến tam giác BCD

Mặt khác

AEtext{ }=text{ }frac{1}{3}ACRightarrow CE=frac{2}{3}AC

Suy ra E là trọng tâm tam giác BCD

M là giao của BE và CD

Vậy BM là trung tuyến tam giác BCD

Vậy M là trung điểm của CD

b. A là trung điểm của BD

M là trung điểm của DC

Suy ra AM là đường trung bình của tam giác BDC

Suy ra AM = 1/2 BC

Bài 4: Cho tam giác ABC, trung tuyến BM. Trên tia BM lấy hai điểm G và K sao cho BG = BM và G là trung điểm của BK. Gọi N là trung điểm của KC , GN cắt CM ở O. Chứng minh:

a) O là trọng tâm của tam giác GKC ;

b) GO = dfrac{1}{3}BC

Học sinh tự giải

Bài 5: Cho tam giác ABC vuông ở A, có AB = 18cm, AC = 24cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.

Hướng dẫn giải

Gọi AD, CE, BF lần lượt là các đường trung tuyến nối từ đỉnh A, C, B của tam giác ABC

Dễ dàng suy ra AE = EB = 9cm, AF = FC = 12cm

Ta có tam giác ABC vuông tại A, áp dụng định lý Pitago ta có:

BC2 = AB2 + AC2 ⇒ BC2 = 182 + 242 = 900 ⇒ BC = 30cm

Ta có ABC vuông mà D là trung điểm cạnh huyền nên AD = BD = DC = 15cm

Suy ra: AG = 2/3 AD = 10cm

Xét tam giác AEC vuông tại A, áp dụng định lý Pitago ta có:

EC2 = AE2 + AC2 ⇒ EC2 = 92 + 242 = 657 ⇒ EC = 3√73 cm ⇒ CG = 2/3 EC = 2√73 cm

Tương tự ta xét tam giác AFB vuông tại A, áp dụng định lý Pitago ta có:

BF2 = AB2 + AF2 ⇒BF2 = 182 + 122 = 468 ⇒ BF = 6√13 cm ⇒ BG = 2/3 BF = 4√13 cm

Tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác là:

AG + BG + CG = 10 + 4√13 + 2√73 (cm)

Bài 6: Cho tam giác ABC, trung tuyến AM. Biết AM = dfrac{1}{2}BC. Chứng minh rằng tam giác ABC vuông ở A.

Học sinh tự giải

Bài 7: Cho tam giác ABC. Các đường trung tuyến BD và CE. Chứng minh BD>frac{3}{2}BC

Hướng dẫn giải

Học sinh tự vẽ hình.

Xét tam giác BGC có:

BG + CG > BC

⇒ frac{2}{3}BD + frac{2}{3}CE > BC

⇒ BD + CE > frac{3}{2}BC

………………..

Mời các bạn tải File tài liệu để xem thêm nội dung chi tiết

Khám Phá Thêm:   Văn mẫu lớp 9: Phân tích khổ 2 Đoàn thuyền đánh cá Bài thơ Đoàn thuyền đánh cá của Huy Cận

Trong bài viết này, chúng ta đã tìm hiểu về công thức tính độ dài đường trung tuyến, một khái niệm quan trọng trong môn Toán lớp 10. Đường trung tuyến là đường đi qua trung điểm của hai đỉnh của một tam giác và song song với cạnh còn lại. Đối với tam giác ABC, ta có công thức tính độ dài đường trung tuyến từ đỉnh A tới đường BC là:

[T_a = frac{1}{2}sqrt{2b^2 + 2c^2 – a^2}]

Công thức này giúp chúng ta tính toán độ dài đường trung tuyến một cách nhanh chóng và chính xác. Tuy nhiên, để sử dụng công thức này, chúng ta cần biết độ dài các cạnh của tam giác.

Đối với tam giác ABC, ta cũng có thể tính độ dài đường trung tuyến từ đỉnh B tới đường AC và từ đỉnh C tới đường AB bằng cách hoán đổi vị trí của các cạnh trong công thức.

Công thức tính độ dài đường trung tuyến không chỉ có ứng dụng trong lĩnh vực học tập mà còn trong thực tế. Ví dụ, trong địa hình núi non, đường trung tuyến của tam giác có thể được sử dụng để tính toán độ dài các đường đi và tối ưu hóa quỹ đạo di chuyển.

Tổng kết lại, công thức tính độ dài đường trung tuyến là một công cụ hữu ích giúp chúng ta tính toán độ dài đường trung tuyến một cách chính xác. Việc áp dụng công thức này trong việc giải quyết các bài toán liên quan đến tam giác không chỉ giúp nắm vững kiến thức môn Toán mà còn phản ánh tính ứng dụng của Toán trong cuộc sống hàng ngày.

Cảm ơn bạn đã xem bài viết Công thức tính độ dài đường trung tuyến Ôn tập Toán 10 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

1. Đường trung tuyến
2. Công thức tính độ dài đường trung tuyến
3. Độ dài đường trung tuyến trong tam giác
4. Tam giác đều
5. Đường trung tuyến trong tam giác đều
6. Đỉnh tam giác
7. Điểm trung điểm
8. Độ dài đường trung tuyến công thức
9. Các công thức tính đường trung tuyến
10. Tính độ dài đường trung tuyến
11. Đường trung tuyến là gì
12. Bài tập tính độ dài đường trung tuyến
13. Phương trình đường thẳng
14. Điểm thuộc đường thẳng
15. Đường tròn tâm đường trung tuyến

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Những câu thơ thả thính ngắn gọn, bá đạo
Next Post: 0913 là mạng gì? Ý nghĩa đặc biệt của đầu số may mắn »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích