Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Chuyên đề về Lũy thừa của một số hữu tỉ Các dạng bài tập về lũy thừa lớp 7

Tháng mười một 17, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Chuyên đề về Lũy thừa của một số hữu tỉ Các dạng bài tập về lũy thừa lớp 7 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Bài tập về lũy thừa số hữu tỉ là tài liệu vô cùng hữu ích mà thcshuynhphuoc-np.edu.vn muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 7 tham khảo. Tài liệu này được áp dụng với cả 3 sách Kết nối tri thức, Cánh diều và Chân trời sáng tạo.

Bài tập lũy thừa số hữu tỉ bao gồm tổng hợp kiến thức lý thuyết về số hữu tỉ, giá trị tuyệt đối, lũy thừa hàm số và đồ thị, thông kê kèm theo các dạng bài tập có đáp án và lời giải chi tiết. Đây là tài liệu hỗ trợ học sinh lớp 7 trong quá trình học tập. Vậy sau đây là trọn bộ tài liệu Bài tập lũy thừa số hữu tỉ chi tiết nhất mời các bạn cùng đón đọc và tải tại đây. Bên cạnh đó các em tham khảo thêm bài tập Nhân chia số hữu tỉ.

Mục Lục Bài Viết

  • I. Tóm tắt lý thuyết lũy thừa số hữu tỉ
  • II. Bài tập lũy thừa lớp 7

I. Tóm tắt lý thuyết lũy thừa số hữu tỉ

1. Luỹ thừa với số mũ tự nhiên.

Luỹ thừa bậc n của một số hữu tỉ, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1): xn= x.x.x.x.x.x

Khám Phá Thêm:   Top phần mềm sản xuất nhạc miễn phí tốt nhất

Quy ước: x1 = x; x0 = 1; (x ¹ 0)

Khi viết số hữu tỉ x dưới dang Chuyên đề về Lũy thừa của một số hữu tỉ Các dạng bài tập về lũy thừa lớp 7, ta có: left(frac{a}{b}right)^{n}=frac{a^{n}}{b^{n}}

2.Tích và thương của hai luỹ thừa cùng cơ số:

x^{m} cdot x^{n}=x^{m+n} quad x^{m}: x^{n}=x^{m-n}(mathrm{x} neq 0, m geq n)

a) Khi nhân hai luỹ thừa cùng cơ số, ta giữ nguyên cơ số và công hai số mũ.

b) Khi chia hai luỹ thừa cùng cơ số khác 0 , ta giữ nguyên cơ số và lấy số mũ của luỹ thừa bi chia trừ đi số mũ của luỹ thừa chia.

3. Luỹ thìa của luỹ thìa.

left(x^{m}right)^{n}=x^{m cdot n}

Khi tính luỹ thừa của một luỹ thừa, ta giữ nguyên cơ số và nhân hai số mũ.

4. Luỹ thìa của một tích – luỹ thìa của một thương

(x cdot y)^{n}=x^{n} cdot y^{n} quad(x: y)^{n}=x^{n}: y^{n}(mathrm{y} neq 0)

Luỹ thừa của một tích bằng tích các luỹ thừa. Luỹ thừa của một thương bằng thương các luỹ thừa.

5. Tóm tắt các công thức về lũy thừa

mathrm{x}, mathrm{y} in mathrm{Q} ; mathrm{x}=frac{a}{b} mathrm{y}=frac{c}{d}

– Nhân hai lũy thừa cùng cơ số left(frac{a}{b}right)^{mathrm{m}} cdotleft(frac{a}{b}right)^{mathrm{n}}=left(frac{a}{b}right)^{mathrm{m}+mathrm{n}}

– Chia hai lũy thừa cùng cơ số left(frac{a}{b}right)^{mathrm{m}}:left(frac{a}{b}right)^{mathrm{n}}=left(frac{a}{b}right)^{mathrm{m}-mathrm{n}}(mathrm{m} geq mathrm{n})

– Lũy thừa của một tích (mathrm{x} cdot mathrm{y})^{mathrm{m}}=mathrm{x}^{mathrm{m}} cdot mathrm{y}_{mathrm{m}}^{mathrm{m}}

– Lũy thừa của một thương (mathrm{x}: mathrm{y})^{mathrm{m}}=mathrm{x}_{m}^{mathrm{m}}: mathrm{y}_{m}^{mathrm{m}}

– Lũy thừa của một lũy thừa left(mathrm{x}^{mathrm{m}}right)^{mathrm{n}}=mathrm{x}_{mathrm{m}}^{mathrm{m} cdot mathrm{n}}

– Lũy thừa với số mũ âm. mathrm{x}^{mathrm{n}}=frac{1}{x^{-n}}

– Quy ước: mathrm{a}^{1}=mathrm{a} ; mathrm{a}^{0}=1.

– Giá trị tuyệt đối

+ ) Với x in Q thì |x|=left{begin{array}{c}x text { nêu } x geq 0 \ -x text { nêu } x<0end{array}right.

|x|>m Leftrightarrowleft{begin{array}{l}x>m \ x<-mend{array}right.

II. Bài tập lũy thừa lớp 7

Bài 1: Tính giá trị của:

M = 1002– 992 + 982 – 972 + … + 22 – 12;

N = (202+ 182 + 162 + … + 42 + 22) – (192 + 172 + 152 + … + 32 + 12);

P = (-1)n.(-1)2n+1.(-1)n+1.

Bài 2: Tìm x biết rằng:

a) (x – 1)3= 27;

b) x2+ x = 0;

c) (2x + 1)2 = 25;

d) (2x – 3)2 = 36;

e) 5x + 2= 625;

Khám Phá Thêm:   Toán lớp 5 Bài 2: Ôn tập các phép tính với số tự nhiên Giải Toán lớp 5 Kết nối tri thức tập 1 trang 9, 10

f) (x – 1)x + 2= (x – 1)x + 4;

g) (2x – 1)3 = -8.

h) = 2x;

Bài 3: Tìm số nguyên dương n biết rằng:

a) 32 < 2n<128;

b) 2.16 ≥ 2n > 4;

c) 9.27 ≤ 3n ≤ 243.

Bài 4: So sánh:

a) 9920và 999910;

b) 321và 231;

c) 230 + 330 + 430 và 3.2410.

Bài 5: Chứng minh rằng nếu a = x3y; b = x2y2; c = xy3 thì với bất kì số hữu tỉ x và y nào ta cũng có: ax + b2 – 2x4y4 = 0 ?

Bài 6: Chứng minh đẳng thức: 1 + 2 + 22 + 23 + … + 299 + 2100 = 2101 – 1.

Bài 7: Tính

a) left(-frac{1}{3}right)^{2} cdotleft(-frac{1}{3}right)

b) (-2)^{2} cdot(-2)^{3}

c) a^{5} cdot a^{7}

Bài 8: Tính

a) left(2^{2}right)^{left(2^{2}right)}

b) frac{8^{14}}{4^{12}}

c) frac{left(-frac{5}{7}right)^{n+1}}{left(-frac{5}{7}right)^{n}}(n geq 1)

Bài 9: Tìm x, biết:

a) left(-frac{2}{3}right)^{2} cdot x=left(-frac{2}{3}right)^{5}

b) left(-frac{1}{3}right)^{3} cdot x=frac{1}{81}

Bài 10: Tính

a) left(-frac{1}{3}right)^{7} cdot 3^{7}

b) (0,125)^{3} .512

c) frac{90^{2}}{15^{2}}

d) frac{790^{4}}{79^{4}}

Bài 11: So sánh 2^{24} và 3^{16}

Bài 12: Tính giá trị biểu thức

a) frac{45^{10} .5^{10}}{75^{10}}

b) frac{(0,8)^{5}}{(0,4)^{6}}

c) frac{2^{15} cdot 9^{4}}{6^{3} cdot 8^{3}}

d) frac{8^{10}+4^{10}}{8^{4}+4^{11}}

Bài 13: Tính

a. left(frac{1}{5}right)^{5} cdot 5^{5}

b. left(frac{1}{5}right)^{3} cdot 10^{3}

c. left(-frac{2}{3}right)^{4}: 2^{4}

d. left(frac{2}{3}right)^{4} cdot 9^{2}

e. left(frac{1}{2}right)^{3} cdotleft(frac{1}{4}right)^{2}

f. frac{120^{3}}{40^{3}}

g. frac{390^{4}}{130^{4}}

h.16/ (0,125)^{3} cdot 512;

Bài 14: Dùng 10 chữ số khác nhau để biểu diễn số 1 mà không dùng các phép tính cộng, trừ,
nhân, chia.

Bài 15: Tính:

a) (0,25)^{3} .32

b) (-0,125)^{3} cdot 80^{4};

c) frac{8^{2} cdot 4^{5}}{2^{20}}

d) frac{81^{11} cdot 3^{17}}{27^{10} cdot 9^{15}}.

Bài 16: Cho mathrm{x} in mathrm{Q} và mathrm{x} neq 0. Hãy viết mathrm{x}^{12} dưới dạng:

a) Tích của hai luỹ thừa trong đó có một luỹ thừa là mathrm{x}^{9} ?

b) Luỹ thừa của x^{4}?

c) Thương của hai luỹ thừa trong đó số bị chia là mathrm{x}^{15}?

Bài 17: Tính nhanh:

a) mathrm{A}=2008^{(1.9 .4 .6)(cdot(9.4 .7) ldots(1.99 .9)};

b) mathrm{B}=left(1000-1^{3}right) cdotleft(1000-2^{3}right) cdotleft(1000-3^{3}right) ldotsleft(1000-50^{3}right).

Bài 18

Viết các số sau dưới dạng lũy thừa với số mũ lớn hơn 1:

0,49;frac{1}{{32}};frac{{ - 8}}{{125}};frac{{16}}{{81}};frac{{121}}{{169}}

Gợi ý đáp án:

Thực hiện các phép tính như sau:

0,49 = 0,7.0,7 = {left( {0,7} right)^2}

frac{1}{{32}} = frac{1}{{2.2.2.2.2}} = frac{1}{{{2^5}}} = frac{{{1^5}}}{{{2^5}}} = {left( {frac{1}{2}} right)^5}

frac{{ - 8}}{{125}} = frac{{left( { - 2} right).left( { - 2} right).left( { - 2} right)}}{{5.5.5}} = frac{{{{left( { - 2} right)}^3}}}{{{5^3}}} = {left( {frac{{ - 2}}{5}} right)^3}

frac{{16}}{{81}} = frac{{4.4}}{{9.9}} = frac{{{4^2}}}{{{9^2}}} = {left( {frac{4}{9}} right)^2}

frac{{121}}{{169}} = frac{{11.11}}{{13.13}} = frac{{{{11}^2}}}{{{{13}^2}}} = {left( {frac{{11}}{{13}}} right)^2}

Bài 19

a) Tính: {left( {frac{{ - 1}}{2}} right)^5};{left( {frac{{ - 2}}{3}} right)^4};{left( { - 2frac{1}{4}} right)^3};{left( {0,3} right)^5};{left( { - 25,7} right)^0}

b) Tính {left( { - frac{1}{3}} right)^2};{left( { - frac{1}{3}} right)^3};{left( { - frac{1}{3}} right)^4};{left( { - frac{1}{3}} right)^5}

Hãy rút ra nhận xét về dấu của lũy thừa với số mũ chẵn và lũy thừa với số mũ lẻ của một số hữu tỉ âm.

Gợi ý đáp án:

Khám Phá Thêm:   Hoá học 10 Bài 2: Thành phần của nguyên tử Giải Hoá học lớp 10 trang 13 sách Chân trời sáng tạo

a) Thực hiện các phép tính như sau:

begin{matrix}
  {left( {dfrac{{ - 1}}{2}} right)^5} = left( {dfrac{{ - 1}}{2}} right).left( {dfrac{{ - 1}}{2}} right).left( {dfrac{{ - 1}}{2}} right).left( {dfrac{{ - 1}}{2}} right).left( {dfrac{{ - 1}}{2}} right) = dfrac{{ - 1}}{{32}} hfill \
  {left( { - 2dfrac{1}{4}} right)^3} = {left( { - dfrac{9}{4}} right)^3} = left( { - dfrac{9}{4}} right).left( { - dfrac{9}{4}} right).left( { - dfrac{9}{4}} right) = dfrac{{ - 729}}{{64}} hfill \
  {left( { - 0,3} right)^5} = left( { - 0,3} right).left( { - 0,3} right).left( { - 0,3} right).left( { - 0,3} right).left( { - 0,3} right) =  - 0,00243 hfill \
  {left( { - 25,7} right)^0} = 1 hfill \ 
end{matrix}

b) Thực hiện các phép tính như sau:

begin{matrix}
  {left( { - dfrac{1}{3}} right)^2} = left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right) = dfrac{1}{9} hfill \
  {left( { - dfrac{1}{3}} right)^3} = left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right) = dfrac{{ - 1}}{{27}} hfill \
  {left( { - dfrac{1}{3}} right)^4} = left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right) = dfrac{1}{{81}} hfill \
  {left( { - dfrac{1}{3}} right)^5} = left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right).left( { - dfrac{1}{3}} right).left( { - frac{1}{3}} right) = dfrac{{ - 1}}{{243}} hfill \ 
end{matrix}

Với số hữu tỉ âm, khi lũy thừa là số mũ chẵn thì cho kết quả là một số hữu tỉ dương, khi lũy thừa là số mũ lẻ thì cho kết quả là một số hữu tỉ âm.

Bài 20

Tìm x biết:

a) x:{left( {frac{{ - 1}}{2}} right)^3} =  - frac{1}{2}

c) {left( {frac{{ - 2}}{3}} right)^{11}}:x = {left( {frac{{ - 2}}{3}} right)^9}

b) x.{left( {frac{3}{5}} right)^7} = {left( {frac{3}{5}} right)^9}

d) x.{left( {0,25} right)^6} = {left( {frac{1}{4}} right)^8}

Gợi ý đáp án:

Thực hiện các phép tính như sau:

a) x:{left( {frac{{ - 1}}{2}} right)^3} =  - frac{1}{2}

begin{matrix}
  x = left( { - dfrac{1}{2}} right).{left( {dfrac{{ - 1}}{2}} right)^3} hfill \
  x = {left( {dfrac{{ - 1}}{2}} right)^1}.{left( {dfrac{{ - 1}}{2}} right)^3} hfill \
  x = {left( {dfrac{{ - 1}}{2}} right)^{1 + 3}} = {left( {dfrac{{ - 1}}{2}} right)^4} hfill \
  x = dfrac{1}{{16}} hfill \ 
end{matrix}

Vậy x = frac{1}{{16}}

b) x.{left( {frac{3}{5}} right)^7} = {left( {frac{3}{5}} right)^9}

begin{matrix}
  x = {left( {dfrac{3}{5}} right)^9}:{left( {dfrac{3}{5}} right)^7} hfill \
  x = {left( {dfrac{3}{5}} right)^{9 - 7}} hfill \
  x = {left( {dfrac{3}{5}} right)^2} hfill \
  x = dfrac{9}{{25}} hfill \ 
end{matrix}

Vậy x = dfrac{9}{{25}}

c) {left( {frac{{ - 2}}{3}} right)^{11}}:x = {left( {frac{{ - 2}}{3}} right)^9}

begin{matrix}
  x = {left( {dfrac{{ - 2}}{3}} right)^{11}}:{left( {dfrac{{ - 2}}{3}} right)^9} hfill \
  x = {left( {dfrac{{ - 2}}{3}} right)^{11 - 9}} hfill \
  x = {left( {dfrac{{ - 2}}{3}} right)^2} hfill \
  x = dfrac{4}{9} hfill \ 
end{matrix}

Vậy x = dfrac{4}{9}

d) x.{left( {0,25} right)^6} = {left( {frac{1}{4}} right)^8}

begin{matrix}
  x = {left( {dfrac{1}{4}} right)^8}:{left( {0,25} right)^6} hfill \
  x = {left( {dfrac{1}{4}} right)^8}:{left( {dfrac{1}{4}} right)^6} hfill \
  x = {left( {dfrac{1}{4}} right)^{8 - 6}} = {left( {dfrac{1}{4}} right)^2} hfill \
  x = dfrac{1}{{16}} hfill \ 
end{matrix}

Vậy x = frac{1}{{16}}

Cảm ơn bạn đã xem bài viết Chuyên đề về Lũy thừa của một số hữu tỉ Các dạng bài tập về lũy thừa lớp 7 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Cách nấu cháo phô mai cho bé ăn dặm giàu dinh dưỡng
Next Post: Lịch nghỉ lễ Giỗ Tổ Hùng Vương năm 2017 chính thức »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích