Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Chuyên đề phương trình nghiệm nguyên Tìm nghiệm nguyên của phương trình

Tháng 9 16, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Chuyên đề phương trình nghiệm nguyên Tìm nghiệm nguyên của phương trình tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Phương trình là một khái niệm quen thuộc trong toán học, đó là một phép toán giải quyết vấn đề tìm ra giá trị của biến mà khi thay vào phương trình, ta thu được một câu chính xác. Trong chuyên đề này, chúng ta sẽ tìm hiểu về phương trình nghiệm nguyên, đặc biệt là tập hợp các giá trị nguyên mà khi thay vào phương trình, phương trình đúng. Đây là một phạm trù quan trọng trong toán học và có ứng dụng rộng rãi trong các lĩnh vực khác nhau như công nghệ thông tin, khoa học tự nhiên hay kinh tế. Bài viết này sẽ giới thiệu cơ bản về phương trình nghiệm nguyên và cách tìm nghiệm nguyên của một phương trình. Sẽ có những ví dụ cụ thể và các phương pháp giải quyết để đề các bạn làm quen với chủ đề này. Nếu bạn quan tâm về toán học và muốn tìm hiểu về phương trình nghiệm nguyên, hãy tiếp tục đọc bài viết này.

Phương trình nghiệm nguyên dưới đây là một trong những kiến thức trọng tâm mà các em lớp 9 cần ghi nhớ để vận dụng tính toán nhanh nhất các bài toán liên quan đến phương trình nghiệm nguyên và cho ra kết quả chính xác.

Chuyên đề phương trình nghiệm nguyên Tìm nghiệm nguyên của phương trình

Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình. Qua đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. Vậy dưới đây là toàn bộ kiến thức về phương trình nghiệm nguyên mời các bạn cùng đón đọc. Bên cạnh đó để học tốt môn Toán 9 các em xem thêm một số tài liệu như: chuyên đề Giải phương trình bậc 2 chứa tham số, bài tập hệ thức Vi-et và các ứng dụng.

Mục Lục Bài Viết

  • 1. Giải phương trình nghiệm nguyên.
  • 2. Một số lưu ý khi giải phương trình nghiệm nguyên.
  • 3. Phương pháp giải phương trình nghiệm nguyên

1. Giải phương trình nghiệm nguyên.

Giải phương trình f(x, y, z, …) = 0 chứa các ẩn x, y, z, … với nghiệm nguyên là tìm tất
cả các bộ số nguyên (x, y, z, …) thỏa mãn phương trình đó.

2. Một số lưu ý khi giải phương trình nghiệm nguyên.

Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. Các phương pháp thường dùng để giải phương trình nghiệm nguyên là:

  • Phương pháp dùng tính chất chia hết
  • Phương pháp xét số dư từng vế
  • Phương pháp sử dụng bất đẳng thức
  • Phương pháp dùng tính chất của số chính phương
  • Phương pháp lùi vô hạn, nguyên tắc cực hạn
Khám Phá Thêm:   Văn mẫu lớp 8: Thuyết minh về cuốn sách Ngữ văn 8 tập 2 2 Dàn ý & 2 bài văn mẫu lớp 8 hay nhất

3. Phương pháp giải phương trình nghiệm nguyên

I. PHƯƠNG PHÁP DÙNG TÍNH CHIA HẾT

Dạng 1: Phát hiện tính chia hết của một ẩn

Bài toán 1. Giải phương trình nghiệm nguyên 3 x+17 y=159 (1)

Hướng dẫn giải

Giả sử x, y là các số nguyên thỏa mãn phương trình (1). Ta thấy 159 và 3 x đều chia hết cho 3 nên 17 y vdots 3 Rightarrow y vdots 3 (do 17 và 3 nguyên tố cùng nhau).

Đặt mathrm{y}=3 mathrm{t}(mathrm{t} in mathrm{Z}) thay vào phương trình ta được 3 mathrm{x}+17.3 mathrm{t}=159 Leftrightarrow mathrm{x}+17 mathrm{t}=53.

Do đó: left{begin{array}{c}mathrm{x}=53-17 mathrm{t} \ mathrm{y}=3 mathrm{t}end{array}(mathrm{t} in mathrm{Z})right.. Thử lại ta thấy thỏa mãn phương trình đã cho

Vậy phương trình có nghiệm (x, y)=(53-17 t, 3 t) với t là số nguyên tùy ý.

Bài toán 2. Tìm nghiệm nguyên của phương trình 2 x+13 y=156 (1).

Hướng dẫn giải

– Phương pháp 1: Ta có 13y:13 và 156:13 nên 2xvdots13 Rightarrow xvdots13 ( vì (2,3)=1).

Đặt x=13 k(k in Z) thay vào (1) ta được: y=-2 k+12

Vậy nghiệm nguyên của phương trình là:left{begin{array}{l}x=13 k \ y=-2 k+12end{array}(k in Z)right..

– Phương pháp 2: Từ (1) Rightarrow x=frac{156-13 y}{2}=78-frac{13 y}{2},

Để x in Z Rightarrow frac{13 y}{2} in Z Mà (13,2)=1 Rightarrow y vdots 2 Đặt y=2 t(t in Z) Rightarrow x=78-13 t

Vậy nghiệm nguyên của phương trình là: left{begin{array}{l}x=78-13 t \ y=-2 tend{array} quad(t in Z)right..

Chú ý: Phương trình có dang ax + by = c với a,b,c là các số nguyên.

* Phương pháp giải:

– Phương pháp 1: Xét tính chia hết của các hang tủ.

– Phương pháp 2: Thủ ẩn, sử dụng tính chia hết tìm đî̀u kiện để một phân số trở thành số nguyên.

Bài toán 3. Giải phương trình nghiệm nguyên 23 x+53 y=109.

Hướng dẫn giải

Ta có x=frac{109-53 y}{23}=frac{23(4-2 y)+17-7 y}{23}=4-2 y+frac{17-7 y}{23}

Ta phải biến đổi tiếp phân số frac{17-7 mathrm{y}}{23} để sao cho hệ số của biến y là 1 .

Phân tích: Ta thêm, bớt vào tử số một bội thích hợp của 23

frac{17-7 mathrm{y}}{23}=frac{17-7 mathrm{y}+46-46}{23}=frac{7(9-mathrm{y})-46}{23}=-2+frac{7(9-mathrm{y})}{23}

Từ đó x=2-2 y+frac{7(9-y)}{23}, Để x in Z Rightarrow frac{9-y}{23} in Z, do (7,23)=1.

Đặt 9-mathrm{y}=23 mathrm{t}(mathrm{t} in mathrm{Z}) Rightarrow mathrm{y}=9-23 mathrm{t}

Vậy nghiệm nguyên của phương trình là: left{begin{array}{l}x=9-23 t \ y=53 t-16end{array}(t in Z)right..

Bài toán 4 . Tìm nghiệm nguyên của phương trình 11 x+18 y=120

Hướng dẫn giải

Ta thấy 11 x vdots 6 Rightarrow x vdots 6 suy ra x=6 k(k in Z) thay vào (1) rút gọn ta được: 11 k+3 y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đối nhỏ (là y) theo k ta được: y=frac{20-11 k}{3}

Tách riêng giá trị nguyên của biểu thức này: mathrm{y}=7-4 mathrm{k}+frac{mathrm{k}-1}{3}

Lại đặt: frac{mathrm{k}-1}{3}=mathrm{t}(mathrm{t} in mathrm{Z}) Rightarrow mathrm{k}=3 mathrm{t}+1.

Do đó: mathrm{y}=7-4(3 mathrm{t}+1)+mathrm{t}=3-11 mathrm{t} ; quad mathrm{x}=6 mathrm{k}=6(3 mathrm{t}+1)=18 mathrm{t}+6

Thay các biểu thức trên vào phương trình (1) thấy thỏa mãn

Vậy nghiệm của phưng trình là (x, y)=(18 t+6 ; 3-11 t) với t in Z

Khám Phá Thêm:   Văn mẫu lớp 10: Tổng hợp kết bài Bảo kính cảnh giới của Nguyễn Trãi (31 mẫu) Gương báu răn mình - Bài 43 Nguyễn Trãi

Chú ý: a) Nếu đề bài yêu cầu tìm nghiệm nguyên dương của phương trình (1) thì sau khi tìm được nghiệm tông quát ta có thể giải điêu kiện:

left{begin{array}{l}
18 mathrm{t}+6>0 \
3-11 mathrm{t}>0
end{array} Leftrightarrow-frac{1}{3}<mathrm{t}<frac{3}{11}right.

Do đó t=0 do t là số nguyên. Nghiệm nguyên dương của (1) là (x, y)=(6,3).

Trong trường hợp tìm nghiệm nguyên dương của (1) ta còn có thể giải như sau: 11 x+18 y=120

Do mathrm{y} geq 1 nên 11 mathrm{x} leq 120-18.1=102.

Do x nguyên nên mathrm{x} leq 9. Mặt khác mathrm{x} vdots 6 và x nguyên dương nên x=6 Rightarrow mathrm{y}=3

Bài toán 5. Tìm nghiệm nguyên dương của phương trình: 6 mathrm{x}^{2}+5 mathrm{y}^{2}=74

Hướng dẫn giải

Ta có:6 mathrm{x}^{2}+5 mathrm{y}^{2}=74 Leftrightarrow 6left(mathrm{x}^{2}-4right)=5left(10-mathrm{y}^{2}right)(2)

Từ (2) suy ra 6left(mathrm{x}^{2}-4right): 5, mặt khác (6,5)=1 Rightarrowleft(mathrm{x}^{2}-4right) vdots 5 Rightarrow mathrm{x}^{2}=5 mathrm{t}+4(mathrm{t} in mathrm{N})

Thay mathrm{x}^{2}-4=5 mathrm{t} vào (2) ta có: 30 mathrm{t}=5left(10-mathrm{y}^{2}right) Leftrightarrow mathrm{y}^{2}=10-6 mathrm{t}

Suy ra:t in{0 ; 1}

Với t=0 không thỏa mãn yêu cầu bài toán.

Với t=1 ta có: left{begin{array}{l}x^{2}=9 \ y^{2}=4end{array} Leftrightarrowleft{begin{array}{l}x=pm 3 \ y=pm 2end{array}right.right..

Mặt khác x, y nguyên dương nên x=3, y=2.

Vậy phương trình có nghiệm (x, y)=(3,2).

Dạng 2: Phương pháp đưa về phương trình ước số

* Cơ sở phương pháp:

Ta tìm cách đưa phương trình đã cho thành phương trình có một vế là tích các biểu thức có giá trị nguyên, vế phải là hằng số nguyên.

Thực chất là biến đổi phương trình về dạng: mathrm{A}(mathrm{x} ; mathrm{y}) cdot mathrm{B}(mathrm{x} ; mathrm{y})=mathrm{c} trong đó mathrm{A}(mathrm{x} ; mathrm{y}), mathrm{B}(mathrm{x} ; mathrm{y})

Dạng 3: Phương pháp tách ra các giá trị nguyên.

* Cơ sở phương pháp: Trong nhiều bài toán phương trình nghiệm nguyên ta tách phương trình ban đầu thành các phần có giá trị nguyên để dễ dàng đánh giá tìm ra nghiệm, đa số các bài toán sử dụng phương pháp này thường rút một ẩn (có bậc nhất) theo ẩn còn lại.

Bài toán 1. Tìm nghiệm nguyên dương của phương trình sau: x y-2 y-3 y+1=0

Hướng dẫn giải

Ta có x y-2 y-3 y+1=0 Rightarrow y(x-3)=2 x-1.

Ta thấy x=3 không là nghiệm nên x neq 3 do đó: y=frac{2 x-1}{x-3}

Tách ra ở phân thức frac{2 x-1}{x-3} các giá trị nguyên:

y=frac{2 x-1}{x-3}=frac{2(x-3)+5}{x-3}=2+frac{5}{x-3}

Do y là số nguyên nên frac{5}{x-3} cũng là số nguyên, do đó (x-3) là ước của 5 .

+) x-3=1 thì x=4, y=2+5=7

+) x-3=-1 thì x=2, y=2-5=-3 (loại)

+) x-3=5 thì x=8, y=2+1=3

+) x-3=-5 thì x=-2 (loại)

Vậy nghiệm (x, y) là (4,7),(8,3).

Bài toán 2 . Tìm các số nguyên x và y thỏa mãn phương trình:mathrm{x}^{2}+mathrm{xy}-2 mathrm{y}-mathrm{x}-5=0

Hướng dẫn giải

Nhận xét: trong phương trình này ẩn y có bậc nhất nên rút y theo x

Ta có: x^{2}+x y-2 y-x-5=0 Leftrightarrow y(x-2)=-x^{2}+x+5 quad(*)

Với x=2 thì: (*) Leftrightarrow 0=3 (vô lý)

…………..

Trọn bộ tài liệu chuyên đề phương trình nghiệm nguyên

……………………

Mời các bạn tải File tài liệu để xem thêm Chuyên đề phương trình nghiệm nguyên

Tìm nghiệm nguyên của một phương trình là một trong những bài toán quan trọng trong toán học, đặc biệt là trong chuyên đề phương trình nghiệm nguyên. Việc tìm nghiệm nguyên không chỉ đòi hỏi kiến thức về giải tích, mà còn đòi hỏi sự minh mẫn, logic và khéo léo trong việc áp dụng các phương pháp, quy tắc phù hợp.

Phương trình nghiệm nguyên là phương trình có các giá trị của biến là các số nguyên, tính chất này thường đảm bảo tính chính xác và toàn cục của nghiệm. Tuy nhiên, việc tìm nghiệm nguyên của một phương trình có thể gặp nhiều khó khăn, đặc biệt là khi phương trình là phức tạp, có bậc cao hoặc chưa được biểu diễn dưới dạng đơn giản.

Khám Phá Thêm:   Đề cương ôn tập giữa học kì 2 môn Ngữ văn 8 sách Chân trời sáng tạo Ôn tập giữa kì 2 Ngữ văn 8 năm 2023 - 2024 (Có đáp án)

Để tìm nghiệm nguyên của một phương trình, có thể áp dụng các phương pháp như phân tích phân tử, phân tích thành thừa số nguyên tố, quy tắc chia hết, và quy tắc modulo. Các phương pháp này giúp chúng ta phân tích và giải quyết phương trình theo từng bước nhỏ, từ đó tìm ra nghiệm nguyên của phương trình.

Tuy nhiên, việc tìm nghiệm nguyên của một phương trình không phải lúc nào cũng đơn giản. Đôi khi, phương trình có thể không có nghiệm nguyên, hoặc có nghiệm nguyên nhưng không thể tìm ra bởi các phương pháp thông thường. Trong trường hợp này, việc tìm nghiệm nguyên có thể trở thành một bài toán khó khăn và phục vụ cho nhiều mục đích khác nhau trong toán học và các lĩnh vực liên quan.

Tổng kết lại, tìm nghiệm nguyên của một phương trình là một bài toán quan trọng trong toán học và đặc biệt trong chuyên đề phương trình nghiệm nguyên. Việc tìm nghiệm nguyên đòi hỏi sự minh mẫn, logic và khéo léo trong việc áp dụng các phương pháp phân tích và giải quyết phương trình. Mặc dù không luôn dễ dàng, tìm nghiệm nguyên là công việc giúp chúng ta hiểu rõ hơn về tính chất và mối quan hệ giữa các số nguyên trong toán học.

Cảm ơn bạn đã xem bài viết Chuyên đề phương trình nghiệm nguyên Tìm nghiệm nguyên của phương trình tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

1. Phương trình nghiệm nguyên
2. Cách tìm nghiệm nguyên của phương trình
3. Phương trình nghiệm nguyên đơn giản
4. Phương trình đồng dư với nghiệm nguyên
5. Tìm điều kiện để phương trình có nghiệm nguyên
6. Phương pháp giải phương trình nghiệm nguyên
7. Tính chất của nghiệm nguyên của phương trình
8. Phương trình nghiệm nguyên vô số
9. Giới hạn nghiệm nguyên trong phương trình
10. Biểu thức nghiệm nguyên của phương trình
11. Phương trình có nghiệm nguyên duy nhất
12. Tập nghiệm nguyên của phương trình
13. Phương trình đa thức có nghiệm nguyên
14. Phương trình bậc cao có nghiệm nguyên
15. Phương trình vi phân có nghiệm nguyên

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « 3 cách nấu chè bắp (ngô) tại nhà ngon ngọt dẻo thơm ăn là nghiền
Next Post: Đảo Lý Sơn ở đâu? Kinh nghiệm đi du lịch tự túc ở đảo Lý Sơn »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Andrew Omobamidele – Tài Năng Trẻ Của Tuyến Dưới Giới Bóng Đá
  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích