Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 15, 16, 17, 18, 19, 20, 21

Tháng 6 18, 2024 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 15, 16, 17, 18, 19, 20, 21 tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Chân trời sáng tạo tập 1 trang 15, 16, 17, 18, 19, 20, 21.

Giải bài tập Toán 9 Chân trời sáng tạo tập 1 trang 15 → 21 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 3 Chương I: Phương trình và hệ phương trình – Phần Số và đại số. Mời thầy cô và các em theo dõi bài viết dưới đây của thcshuynhphuoc-np.edu.vn:

Mục Lục Bài Viết

  • Giải Toán 9 Chân trời sáng tạo Tập 1 trang 21
    • Bài 1
    • Bài 2
    • Bài 3
    • Bài 4
    • Bài 5
    • Bài 6
    • Bài 7

Giải Toán 9 Chân trời sáng tạo Tập 1 trang 21

Bài 1

Giải các hệ phương trình

Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 15, 16, 17, 18, 19, 20, 21

b) left{ {begin{array}{*{20}{c}}{x - y = 3}\{3x - 4y = 2}end{array}} right.

c) left{ {begin{array}{*{20}{c}}{4x + 5y = - 2}\{2x - y = - 8}end{array}} right.

d) left{ {begin{array}{*{20}{c}}{3x + y = 3}\{ - 3y = 5}end{array}} right.

Lời giải:

Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 15, 16, 17, 18, 19, 20, 21

begin{array}{l}left{ {begin{array}{*{20}{c}}{3x + y = 3}\{y = 2x - 7}end{array}} right.\left{ {begin{array}{*{20}{c}}{3x + 2x - 7 = 3}\{y = 2x - 7}end{array}} right.\left{ {begin{array}{*{20}{c}}{5x = 10}\{y = 2x - 7}end{array}} right.\left{ {begin{array}{*{20}{c}}{x = 2}\{y = - 3}end{array}} right.end{array}

Vậy hệ phương trình có nghiệm duy nhất là (2; – 3).

b) left{ {begin{array}{*{20}{c}}{x - y = 3}\{3x - 4y = 2}end{array}} right.

begin{array}{l}left{ {begin{array}{*{20}{c}}{x = 3 + y}\{3.(3 + y) - 4y = 2}end{array}} right.\left{ {begin{array}{*{20}{c}}{x = 3 + y}\{y = 7}end{array}} right.\left{ {begin{array}{*{20}{c}}{x = 10}\{y = 7}end{array}} right.end{array}

Vậy hệ phương trình có nghiệm duy nhất là (10; 7).

c)left{ {begin{array}{*{20}{c}}{4x + 5y = - 2}\{2x - y = - 8}end{array}} right.

begin{array}{l}left{ {begin{array}{*{20}{c}}{4x + 5.(2x + 8) = - 2}\{y = 2x + 8}end{array}} right.\left{ {begin{array}{*{20}{c}}{14x = - 42}\{y = 2x + 8}end{array}} right.\left{ {begin{array}{*{20}{c}}{x = - 3}\{y = 2}end{array}} right.end{array}

Vậy hệ phương trình có nghiệm duy nhất là (-3; 2).

d) left{ {begin{array}{*{20}{c}}{3x + y = 3}\{ - 3y = 5}end{array}} right.

begin{array}{l}left{ {begin{array}{*{20}{c}}{3x + frac{{ - 5}}{3} = 3}\{y = frac{{ - 5}}{3}}end{array}} right.\left{ {begin{array}{*{20}{c}}{3x = frac{{14}}{3}}\{y = frac{{ - 5}}{3}}end{array}} right.\left{ {begin{array}{*{20}{c}}{x = frac{{14}}{9}}\{y = frac{{ - 5}}{3}}end{array}} right.end{array}

Vậy hệ phương trình có nghiệm duy nhất là left( {frac{{14}}{9};frac{{ - 5}}{3}} right).

Bài 2

Giải các hệ phương trình:

a) left{ begin{array}{l} 4x + y = 2 \ frac{4}{3} x + frac{1}{3} y = 1 end{array} right.

b) left{ begin{array}{l} x - ysqrt{2}  = 0 \ 2x + ysqrt{2} = 3 end{array} right.

c) left{ begin{array}{l} 5xsqrt{3} + y = 2sqrt{2} \ xsqrt{6} - ysqrt{2} = 2 end{array} right.

d) left{ begin{array}{l} 2(x + y) + 3(x - y) = 4 \ (x + y) + 2(x - y) = 5 end{array} right.

Lời giải:

a)left{ begin{array}{l} 4x + y = 2 \ frac{4}{3} x + frac{1}{3} y = 1 end{array} right.

Nhân hai vế của phương trình thứ hai với – 3, ta được:

left{ begin{array}{l} 4x + y = 2 \ -4 x -  y = - 3 end{array} right.

Cộng từng vế hai phương trình của hệ, ta được: 0x + 0y = – 1. Phương trình này vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

b)left{ begin{array}{l} x - ysqrt{2}  = 0 \ 2x + ysqrt{2} = 3 end{array} right.

Cộng từng vế hai phương trình của hệ, ta được: 3x = 3. Suy ra x = 1.

Khám Phá Thêm:   Đề cương ôn tập học kì 1 môn Giáo dục Kinh tế và Pháp luật 11 năm 2023 - 2024 (Sách mới) Ôn tập cuối học kì 1 GDKT&PL 11 sách KNTT, CTST, Cánh diều

Thay x = 1 vào phương trình x-ysqrt{2}=0 ta được 1-ysqrt{2}=0. Do đó y=frac{1}{sqrt{2}}

Vậy hệ phương trình có nghiệm duy nhất left(1;frac{1}{sqrt{2}}right).

c)left{ begin{array}{l} 5xsqrt{3} + y = 2sqrt{2} \ xsqrt{6} - ysqrt{2} = 2 end{array} right.

Nhân hai vế của phương trình thứ nhất với sqrt{2}, ta được:

left{ begin{array}{l} 5xsqrt{6} + ysqrt{2} = 4 \ xsqrt{6} - ysqrt{2} = 2 end{array} right.

Cộng từng vế hai phương trình của hệ, ta được: 6xsqrt{6}=6. Suy ra x=frac{1}{sqrt{6}}

Thay x=frac{1}{sqrt{6}} vào phương trình xsqrt{6} -ysqrt{2}= 2 ta được 1-ysqrt{2}=2. Do đó y=-frac{1}{sqrt{2}}

Vậy hệ phương trình có nghiệm duy nhất left(frac{1}{sqrt{6}};-frac{1}{sqrt{2}}right)

d)left{ begin{array}{l} 2(x + y) + 3(x - y) = 4 \ (x + y) + 2(x - y) = 5 end{array} right.

left{ begin{array}{l} 5x - y = 4 \ 3x- y = 5 end{array} right.

left{ begin{array}{l}  y =5x - 4 \ 3x- (5x - 4) = 5 end{array} right.

left{ begin{array}{l}  x = - frac{1}{2}   \ y = - frac{13}{2} end{array} right.

Vậy hệ phương trình có nghiệm duy nhất left{ begin{array}{l}  x = - frac{1}{2}   \ y = - frac{13}{2} end{array} right..

Bài 3

Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:

a) A(1; 2) và B(3; 8);

b) A(2; 1) và B(4; – 2)

Lời giải:

a) Ta có:

A(1; 2) thuộc đồ thị hàm số nên 2 = a + b (1)

B(3; 8) thuộc đồ thị hàm số nên 8 = 3a + b (2).

Từ (1) và (2) ta có hệ phương trình:

left{ begin{array}{l}  a + b =  2   \ 3a +b = 8 end{array} right.

left{ begin{array}{l}  b =  2- a  \ 3a + 2-a = 8 end{array} right.

left{ begin{array}{l}  a = 3  \ b = -1 end{array} right.

Vậy left{ begin{array}{l}  a = 3  \ b = -1 end{array} right. thì đồ thị hàm số đi qua hai điểm A và B.

b) Ta có:

A(2; 1) thuộc đồ thị hàm số nên 1 = 2a + b (1)

B(4; – 2) thuộc đồ thị hàm số nên – 2 = 4a + b (2).

Từ (1) và (2) ta có hệ phương trình:

left{ begin{array}{l} 2a + b = 1   \ 4a +b = -2 end{array} right.

left{ begin{array}{l} b = 1 - 2a   \ 4a + 1 -2a = - 2end{array} right.

left{ begin{array}{l} b = 1 - 2a   \ a = - frac{3}{2}  end{array} right.

left{ begin{array}{l}  a = - frac{3}{2} \ b = 4 end{array} right.

Vậy left{ begin{array}{l}  a = - frac{3}{2} \ b = 4 end{array} right. thì đồ thị hàm số đi qua hai điểm A và B.

Bài 4

Trong tháng thứ nhất, hai tổ sản xuất được 800 chi tiết máy. So với tháng thứ nhất, trong tháng thứ hai, tổ một sản xuất vượt 15%, tổ hai vượt 20% nên trong tháng này, cả hai tổ đã sản xuất được 945 chi tiết máy. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu chi tiết máy?

Lời giải:

Gọi x và y lần lượt là số chi tiết máy mà tổ một và tổ hai sản xuất được trong tháng thứ nhất (x in mathbb{N}*;y in mathbb{N}*).

Trong tháng thứ nhất, hai tổ sản xuất được 800 chi tiết máy, nên ta có phương trình:

x + y = 800 (1)

Trong tháng thứ hai, tổ một sản xuất vượt 15%, tổ hai vượt 20% nên trong tháng này, cả hai tổ đã sản xuất được 945 chi tiết máy, ta có phương trình

(x + 0,15x) + (y + 0,2y) = 945 (2)

Khám Phá Thêm:   Tuyển tập những bài Toán hay lớp 5 Ôn tập Toán lớp 5

Từ (1) và (2) ta có hệ phương trình: left{ {begin{array}{*{20}{c}}{x + y = 800}\{1,15x + 1,2y = 945}end{array}} right.

Giải hệ phương trình ta được: left{ {begin{array}{*{20}{c}}{x = 300}\{y = 500}end{array}} right.

Vậy trong tháng 1, tổ một sản xuất được 300 chi tiết máy, tổ hai sản xuất được 500 chi tiết máy.

Bài 5

Hai tổ sản xuất cùng may một loại áo khoác xuất khẩu. Nếu tổ thứ nhất may trong 7 ngày và tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1540 chiếc áo. Biết rằng mỗi ngày tổ thứ hai may được nhiều hơn tổ thứ nhất 20 chiếc áo. Hỏi trong một ngày mỗi tổ may được bao nhiêu chiếc áo?(Năng suất may áo của mỗi tổ trong các ngày là như nhau.)

Lời giải:

Gọi x và y lần lượt là số áo mà tổ thứ nhất và tổ thứ hai may được trong một ngày

(x in mathbb{N}*;y in mathbb{N}*).

Nếu tổ thứ nhất may trong 7 ngày và tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1540 chiếc áo, nên ta có phương trình: 5x + 7y = 1540 (1)

Mỗi ngày tổ thứ hai may được nhiều hơn tổ thứ nhất 20 chiếc áo, ta có phương trình: y – x = 20 (2)

Từ (1) và (2) ta có hệ phương trình: left{ {begin{array}{*{20}{c}}{7x + 5y = 1540}\{y - x = 20}end{array}} right.

Giải hệ phương trình, ta được: left{ {begin{array}{*{20}{c}}{x = 120}\{y = 140}end{array}} right.

Vậy trong một ngày tổ thứ nhất may được 120 chiếc áo, tổ thứ hai may được 140 chiếc áo.

Bài 6

Trên một cánh đồng, người ta cấy 60 ha lúa giống mới và 40 ha lúa giống cũ, thu hoạch được tất cả 660 tấn thóc. Hỏi năng suất lúa giống mới trên 1 ha bằng bao nhiêu? Biết rằng 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn.

Lời giải:

Gọi x và y lần lượt là năng suất lúa giống mới và giống cũ trên 1 ha

(x in mathbb{N}*;y in mathbb{N}*).

Người ta cấy 60 ha lúa giống mới và 40 ha lúa giống cũ, thu hoạch được tất cả 660 tấn thóc, nên ta có phương trình: 60x + 40y = 660 (1)

Biết rằng 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn, ta có phương trình: 4y – 3x = 3 (2)

Khám Phá Thêm:   Cấu trúc đề thi THPT Quốc gia 2025 - Tất cả các môn Cấu trúc đề thi tốt nghiệp THPT 2025

Từ (1) và (2) ta có hệ phương trình: left{ {begin{array}{*{20}{c}}{60x + 40y = 660}\{4y - 3x = 3}end{array}} right.

Giải hệ phương trình, ta được: left{ {begin{array}{*{20}{c}}{x = 7}\{y = 6}end{array}} right.

Vậy năng suất lúa giống mới trên 1 ha là 7 tấn; năng suất lúa giống cũ trên 1 ha là 6 tấn.

Bài 7

Cân bằng các phương trình hóa học sau bằng phương pháp đại số:

a) Ag + Cl2 -> AgCl

b) CO2 + C -> CO

Lời giải:

a) Ag + Cl2 -> AgCl

Gọi x, y lần lượt là hệ số của Ag và Cl2 thỏa mãn cân bằng phương trình hóa học

x Ag + y Cl2 -> AgCl

Cân bằng số nguyên tử Ag, số nguyên tử Cl ở hai vế, ta được hệ:

left{ begin{array}{l} x = 1  \ 2y=1 end{array} right.

Giải hệ phương trình, ta được left{ begin{array}{l} x  = 1   \ y = frac{1}{2}  end{array} right.

Đưa các hệ số tìm được vào phương trình hóa học, ta có:

Ag+frac{1}{2}Cl_2 rightarrow  AgCl

Do các hệ số của phương trình hóa học phải là số nguyên nên nhân hai vế của phương trình hóa học trên với 2, ta được

2Ag + Cl2 -> 2AgCl

b) CO2 + C -> CO

Gọi x, y lần lượt là hệ số của CO2 và C thỏa mãn cân bằng phương trình hóa học

x CO2 + y C -> CO

Cân bằng số nguyên tử C, số nguyên tử O ở hai vế, ta được hệ:

left{ begin{array}{l} x + y = 1  \ 2x = 1 end{array} right.

Giải hệ phương trình, ta được left{ begin{array}{l} x  = frac{1}{2}    \ y = frac{1}{2}  end{array} right.

Đưa các hệ số tìm được vào phương trình hóa học, ta có:

frac{1}{2}CO_2+frac{1}{2}C rightarrow  CO

Do các hệ số của phương trình hóa học phải là số nguyên nên nhân hai vế của phương trình hóa học trên với 2, ta được

CO2 + C -> 2CO

Cảm ơn bạn đã xem bài viết Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 15, 16, 17, 18, 19, 20, 21 tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Soạn bài Khúc tráng ca nhà giàn Cánh diều Ngữ văn lớp 12 trang 87 sách Cánh diều tập 1
Next Post: Toán 9 Bài 2: Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 10, 11, 12, 13, 14 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích