Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Chứng minh đồ thị hàm số luôn đi qua một điểm cố định Điểm cố định của hàm số

Tháng 12 9, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Chứng minh đồ thị hàm số luôn đi qua một điểm cố định Điểm cố định của hàm số tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Chứng minh đồ thị hàm số luôn đi qua một điểm cố định là một trong những dạng toán trọng tâm thường xuất hiện trong các bài kiểm tra, bài thi học kì môn Toán lớp 9.

Cách tìm điểm cố định mà đồ thị hàm số luôn đi qua tổng hợp toàn bộ kiến thức về cách tính kèm theo ví dụ minh họa. Thông qua tài liệu này giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được kết quả cao trong kì thi vào lớp 10 sắp tới. Vậy sau đây là Cách tìm điểm cố định mà đồ thị hàm số luôn đi qua, mời các bạn cùng theo dõi tại đây.

Mục Lục Bài Viết

  • I. Bài toán chứng tỏ đồ thị hàm số đi qua một điểm cố định với mọi m
  • II. Ví dụ về bài toán chứng tỏ đồ thị hàm số đi qua một điểm cố định

I. Bài toán chứng tỏ đồ thị hàm số đi qua một điểm cố định với mọi m

+ Với một giá trị của tham số m ta được một đồ thị hàm số (dm) tương ứng. Như vậy khi m thay đổi thì đồ thị hàm số (dm) cũng thay đổi theo hai trường hợp:

Khám Phá Thêm:   Tổng hợp các mã cheat trong game GTA Vice City

– Hoặc mọi điểm của (dm)đều di động

– Hoặc có một vài điểm của (dm) đứng yên khi m thay đổi

+ Những điểm đứng yên khi m thay đổi gọi là điểm cố định của đồ thị hàm số (dm). Đó là những điểm mà đồ thị hàm số đều đi qua với mọi giá trị của m

+ Phương trình ax + b = 0 nghiệm đúng với mọi x khi và chỉ khi a = 0 và b = 0

II. Ví dụ về bài toán chứng tỏ đồ thị hàm số đi qua một điểm cố định

Bài 1: Chứng tỏ rằng với mọi m họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua một điểm cố định.

Gợi ý đáp án

Gọi điểm M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua, sau đó tìm giá trị x0 và y0 thỏa mãn.

Gợi ý đáp án

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

⇔ y0 = (m + 1)x0 + 2x0 – m với mọi m

⇔ y0 = mx0 + x0 + 2x0 – m với mọi m

⇔ y0 – mx0 – 3x0 – m = 0 với mọi m

⇔ m(-x0 – 1) + (y0 – 3x0) = 0 với mọi m

Leftrightarrow left{ begin{array}{l}
 - {x_o} + 1 = 0\
{y_0} - 3{x_0} = 0
end{array} right. Leftrightarrow left{ begin{array}{l}
{x_0} = 1\
{y_0} = 3
end{array} right. Rightarrow Mleft( {1;3} right)

Vậy với mọi m, họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua một điểm M cố định có tọa độ M(1; 3)

Bài 2: Cho hàm số y = (2m – 3)x + m – 1. Chứng minh rằng đồ thị hàm số đi qua điểm cố định với mọi giá trị của m. Tìm điểm cố định ấy.

Khám Phá Thêm:   Kế hoạch giáo dục môn Tin học 8 sách Kết nối tri thức với cuộc sống KHGD Tin học lớp 8 (Phụ lục I, III Công văn 5512)

Gợi ý đáp án

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

y0 = (2m – 3)x0 + m – 1 với mọi m

⇔ y0 = 2mx0 – 3x0 + m – 1 với mọi m

⇔ y0 – 2mx0 – 3x0 + m – 1 = 0 với mọi m

⇔ m(-2x0 + 1) + (y0 – 3x0 – 1) = 0 với mọi m

Leftrightarrow left{ begin{array}{l}
 - 2{x_o} + 1 = 0\
{y_0} - 3{x_0} - 1 = 0
end{array} right. Leftrightarrow left{ begin{array}{l}
{x_0} = frac{1}{2}\
{y_0} = frac{5}{2}
end{array} right. Rightarrow Mleft( {frac{1}{2};frac{5}{2}} right)

Vậy với mọi m, họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua một điểm M cố định có tọa độ Mleft( {frac{1}{2};frac{5}{2}} right)

Bài 3: Cho hàm số y = mx + 3m – 1. Tìm tọa độ của điểm mà đường thẳng luôn đi qua với mọi m

Gợi ý đáp án

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

y0 = mx0 + 3m – 1 với mọi m

⇔ y0 – mx0 – 3m + 1 = 0 với mọi m

⇔ m(-x0 – 3) + (y0 + 1) = 0 với mọi m

Leftrightarrow left{ begin{array}{l}
 - {x_0} - 3 = 0\
{y_0} + 1 = 0
end{array} right. Leftrightarrow left{ begin{array}{l}
{x_0} =  - 3\
{y_0} =  - 1
end{array} right. Rightarrow Mleft( { - 3; - 1} right)

Vậy với mọi m, họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua một điểm M cố định có tọa độ M(-3; -1)

Bài 4: Cho hàm số y = (m – 1)x + 2020. Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m

Gợi ý đáp án

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

y0 = (m – 1)x0 + 2020 với mọi m

⇔ y0 – mx0 – x0 – 2020 = 0 với mọi m

⇔ -mx0 + (y0 – x0 – 2020) = 0 với mọi m

Leftrightarrow left{ begin{array}{l}
{x_0} = 0\
{y_0} - {x_0} - 2020 = 0
end{array} right. Leftrightarrow left{ begin{array}{l}
{x_0} = 0\
{y_0} = 2020
end{array} right. Rightarrow Mleft( {0;2020} right)

Vậy với mọi m, họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua một điểm M cố định có tọa độ M(0; 2020)

Khám Phá Thêm:   Top game bắn cá hấp dẫn nhất trên điện thoại

Cảm ơn bạn đã xem bài viết Chứng minh đồ thị hàm số luôn đi qua một điểm cố định Điểm cố định của hàm số tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Cách thay đổi màu trình duyệt Chrome
Next Post: Cách đặt tên Facebook trong ngoặc đơn »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Andrew Omobamidele – Tài Năng Trẻ Của Tuyến Dưới Giới Bóng Đá
  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích