Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Phương pháp tọa độ hóa hình không gian Tọa độ hóa hình học không gian

Tháng 12 3, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Phương pháp tọa độ hóa hình không gian Tọa độ hóa hình học không gian tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Phương pháp tọa độ hóa hình không gian gồm 16 trang hướng dẫn phương pháp tọa độ hóa để giải các bài toán hình học không gian. Tài liệu bao gồm các kiến thức như: các công thức, cách xác định tọa độ điểm, cách chọn hệ trục tọa độ – chọn véctơ kèm theo các ví dụ minh họa.

Tọa độ hóa hình học không gian được trình bày rất khoa học, logic giúp người học dễ hình dung và hiểu rõ kiến thức. Thông qua tài liệu này các bạn lớp 12 nhanh chóng nắm vững kiến thức để giải nhanh các bài tập hình không gian. Bên cạnh đó các bạn xem thêm bộ đề ôn thi THPT Quốc gia môn Toán, phân dạng câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán.

Mục Lục Bài Viết

  • Phương pháp tọa độ hóa hình không gian
    • I. Các công thức tọa độ hóa hình không gian

Phương pháp tọa độ hóa hình không gian

I. Các công thức tọa độ hóa hình không gian

1. Vectơ trong không gian

Trong không gian cho các vect Phương pháp tọa độ hóa hình không gian Tọa độ hóa hình học không gian và số k tùy hat{y}

begin{array}{l}

overrightarrow{u_{1}}=overrightarrow{u_{2}} Leftrightarrowleft{begin{array}{l}

x_{1}=x_{2} \

y_{1}=y_{2} \

z_{1}=z_{2}

end{array}right. \

overrightarrow{u_{1}} pm overrightarrow{u_{2}}=left(x_{1} pm x_{2}, y_{1} pm y_{2}, z_{1} pm z_{2}right)

end{array}

k overrightarrow{u_{1}}=left(k x_{1}, k y_{1}, k z_{1}right)

– Tích có hướng: overrightarrow{u_{1}} cdot overrightarrow{u_{2}}=x_{1} cdot x_{2}+y_{1} cdot y_{2}+z_{1} cdot z_{2}

– Hai vectơ vuông góc nhau Leftrightarrow overrightarrow{u_{1}} cdot overrightarrow{u_{2}}=0 Leftrightarrow x_{1} cdot x_{2}+y_{1} cdot y_{2}+z_{1} cdot z_{2}=0

left|overrightarrow{u_{1}}right|=sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}

– Gọi varphi là góc hợp bởi hai vectơ left(0^{circ} leqslant varphi leqslant 180^{circ}right)

Khám Phá Thêm:   Hướng dẫn xem điểm trên VietSchool

begin{aligned}

cos varphi=cos left(overrightarrow{u_{1}}, overrightarrow{u_{2}}right)=frac{overrightarrow{u_{1}} cdot overrightarrow{u_{2}}}{left|overrightarrow{u_{1}}right| cdotleft|overrightarrow{u_{2}}right|}=frac{x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}}{sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}} cdot sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}} \

overrightarrow{A B}=left(x_{B}-x_{A}, y_{B}-y_{A}, z_{B}-z_{A}right) \

A B=sqrt{left(x_{B}-x_{A}right)^{2}+left(y_{B}-y_{A}right)^{2}+left(z_{B}-z_{A}right)^{2}}

end{aligned}

– Tọa độ các điểm đặc biệt:

– Tọa độ trung điểm I của A B:Ileft(frac{x_{A}+x_{B}}{2}, frac{y_{A}+y_{B}}{2}, frac{z_{A}+z_{B}}{2}right)

Tọa độ trọng tâm G của tam giác A B C:

Gleft(frac{x_{A}+x_{B}+x_{C}}{3}, frac{y_{A}+y_{B}+y_{C}}{3}, frac{z_{A}+z_{B}+z_{C}}{3}right.),

– Tọa độ trọng tâm G của tứ diện ABCD:

Gleft(frac{x_{A}+x_{B}+x_{C}+x_{D}}{4}, frac{y_{A}+y_{B}+y_{C}+y_{D}}{4}, frac{z_{A}+z_{B}+z_{C}+z_{D}}{4}right)

Tích có hướng của hai vectơ là 1 vectơ vuông góc của hai vectơ xác định bởi

vec{u}=left[overrightarrow{u_{1}}, overrightarrow{u_{2}}right]=left(left|begin{array}{ll}

y_{1} & z_{1} \

y_{2} & z_{2}

end{array}right|,left|begin{array}{cc}

z_{1} & x_{1} \

z_{2} & x_{2}

end{array}right|,left|begin{array}{ll}

x_{1} & z_{1} \

x_{2} & z_{2}

end{array}right|right)

– Một số tính chất của tích có hướng

star vec{a} và vec{b} cùng phương Leftrightarrow[vec{a}, vec{b}]=overrightarrow{0}

A, B, C thẳng hàng Leftrightarrow[overrightarrow{A B}, overrightarrow{A C}]=overrightarrow{0}

Ba vectơ vec{a}, vec{b}, vec{c} đồng phẳng Leftrightarrow[vec{a}, vec{b}] cdot vec{c}=0

Bốn điểm A, B, C, D không đồng phẳng Leftrightarrow[overrightarrow{A B}, overrightarrow{A C}] cdot overrightarrow{A D} neq overrightarrow{0}

star|[vec{a}, vec{b}]|=|vec{a}| cdot|vec{b}| cdot sin (vec{a}, vec{b})

Các ứng dụng của tích có hướng

star

S_{A B C D}=|[overrightarrow{A B}, overrightarrow{A D}]|

starDiện tích tam giác:S_{A B C}=frac{1}{2}|[overrightarrow{A B}, overrightarrow{A C}]|

*Thể tích khối hộp:

V_{A B C D cdot A^{prime} B^{prime} C^{prime} D^{prime}}=left|[overrightarrow{A B}, overrightarrow{A D}] cdot overrightarrow{A A^{prime}}right|

*Thể tích tứ diện:

V_{A B C D}=frac{1}{6}|[overrightarrow{A B}, overrightarrow{A C}] cdot overrightarrow{A D}|

2. Phương trình mặt phẳng

– Phương trình tổng quát(alpha): a x+b y+c z+d=0 với left(a^{2}+b^{2}+c^{2} neq 0right).

– Phương trình mặt phẳng (alpha) qua Mleft(x_{0}, y_{0}, z_{0}right) và có vectơ pháp tuyến vec{n}=(a, b, c)

(alpha): aleft(x-x_{0}right)+bleft(y-y_{0}right)+cleft(z-z_{0}right)=0

Phương trình mặt phẳng theo đoạn chắn: (alpha) qua A(a, 0,0) ; B(0, b, 0) ; C(0,0, c)

(alpha): frac{x-x_{0}}{a}+frac{y-y_{0}}{b}+frac{z-z_{0}}{c}=1, quadvới a, b, c neq 0

– Nếu vec{n}=(a, b, c) là vectơ pháp tuyến của (alpha) thì k vec{n}, k neq 0 cũng là vectơ pháp tuyến của (alpha). Do đó một mặt phẳng có vô số vectơ pháp tuyến. Trong một số trường hợp ta có thể tìm vectơ pháp tuyến bằng cách chọn một giá trị cụ thể (hoặc b hoặc c) và tính hai giá trị còn lại đảm bảo đúng tỉ lệ a: b: c.

3. Góc

Góc giũa hai mặt phẳng: Cho mặt phẳng (alpha) có vectơ pháp tuyến là overrightarrow{n_{alpha}}, mặt phẳng (beta) có vectơ pháp tuyến overrightarrow{n_{beta}}, khi đó góc giữa (alpha) và (beta) được tính bằng

cos ((alpha),(beta))=left|cos left(overrightarrow{n_{alpha}}, overrightarrow{n_{beta}}right)right|=frac{left|overrightarrow{n_{alpha}} cdot overrightarrow{n_{beta}}right|}{left|overrightarrow{n_{alpha}}right| cdotleft|overrightarrow{n_{beta}}right|}
Góc giữa hai đường thẳng: Cho hai đường thẳng d_{1} và d_{2} có các vectơ chỉ phương là overrightarrow{u_{1}} và overrightarrow{u_{2}}, khi đó góc giữa d_{1} và d_{2}  tính bằng

cos left(d_{1}, d_{2}right)=left|cos left(overrightarrow{u_{2}}, overrightarrow{u_{2}}right)right|=frac{left|overrightarrow{u_{1}} cdot overrightarrow{u_{2}}right|}{left|overrightarrow{u_{1}}right| cdotleft|overrightarrow{u_{2}}right|}

2. Xác định tọa độ điểm

Khám Phá Thêm:   Nội quy học sinh (14 mẫu) Quy chế quản lý học sinh Mầm non, Tiểu học, THCS, THPT

2.1 Tọa độ điểm trên trục tọa độ

Tìm tọa độ điểm A trên trục tọa độ ta tìm khoảng cách từ A đến gốc tọa độ và dựa vào chiều dương đã chọn để xác định tọa độ A.

Ví dụ chọn tia O A trùng tia O x , điểm A và B nằm trên O x

• O A = 2 ⇒ A (0, 0, 2).

• O B = 3 ⇒ B (0, 0,−3) (do B nằm ở phần âm)

2.2 Tọa độ điểm trên mặt phẳng tọa độ

Tìm tọa độ của A trên 1 mặt phẳng tọa độ ta tìm hình chiếu của A trên các trục tọa
độ và dựa vào các tọa độ hình chiếu này để xác định tọa độ A.

Ví dụ các điểm A,B,C có hình chiếu trên các trục với độ dài như hình vẽ, theo chiều dương
đã chọn ta được

• AK = 1 = xK , AH = 2 = yK : tọa độ A(1, 2)

• B I = 2 = −xB (do B nằm phần âm của trục hoành),BM = 1 = yB : tọa độ B(−2, 1)

• C J = 2,C M = 2: tọa độ C (−2,−2) (do C nằm ở phần âm của trục tung và trục hoành)

2.3 Tọa độ điểm trường hợp tổng quát

Tìm tọa độ của A đầu tiên ta tìm tọa độ hình chiếu H của A lên mặt phẳng tọa độ bất kì, sau đó ta tính độ dài AH . Tọa độ A xác định nhờ tọa độ H và độ dài AH .

Ví dụ tọa độ hình chiếu vuông góc của A lên mặt phẳng Oxy là H (a,b ), ta tính được AH = c  thì khi đó A có tọa độ A(a,b, c ) (giả sử rằng các thành phần tọa độ A đều nằm trong phần
dương).

Khám Phá Thêm:   Viết đoạn văn ngắn giới thiệu về vấn đề xã hội của Cộng hòa Nam Phi Giải Địa lí 11 Bài 29 Cánh diều

………….

Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết

Cảm ơn bạn đã xem bài viết Phương pháp tọa độ hóa hình không gian Tọa độ hóa hình học không gian tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Bộ câu hỏi ôn thi Rung chuông vàng lớp 2 Tài liệu ôn thi Rung chuông vàng lớp 2
Next Post: PUBG: Những điều cần biết về tàu bay Motor Glider »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích