Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất Đề thi tuyển sinh lớp 10 môn Toán (Có đáp án)

Tháng 9 16, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất Đề thi tuyển sinh lớp 10 môn Toán (Có đáp án) tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Khi trở thành học sinh lớp 10, môn Toán sẽ trở thành một trong những môn học quan trọng và đòi hỏi sự nỗ lực đặc biệt từ phía các em. Hiểu được điều này, chúng tôi đã tổng hợp và biên soạn Bộ 40 đề thi vào lớp 10 môn Toán, với hy vọng mang đến cho các em tài liệu ôn tập đa dạng, chất lượng và khó khăn tương đương với đề thi tuyển sinh.

Bộ 40 đề thi môn Toán này không chỉ tập trung vào những kiến thức cơ bản mà các em đã học từ các năm trước đây, mà còn mở rộng phạm vi kiến thức và đặt các câu hỏi theo cấu trúc và dạng bài tương tự như đề thi tuyển sinh lớp 10. Chúng tôi đã lựa chọn và chọn lọc những đề thi tốt nhất từ các kỳ thi tuyển sinh trước đây để đảm bảo sự đa dạng và phong phú cho các em trong quá trình ôn tập.

Mỗi đề thi trong bộ sưu tập này đều đi kèm với đáp án chi tiết và cách giải thích cụ thể, giúp các em dễ dàng kiểm tra và tự đánh giá năng lực của mình. Các câu hỏi trong đề thi được biên soạn logic, tư duy và sâu sắc, từ đó giúp rèn luyện kỹ năng thực hành toán học và tư duy logic của các em.

Bộ 40 đề thi vào lớp 10 môn Toán này không chỉ hữu ích cho các em trong quá trình ôn tập và chuẩn bị cho kỳ thi tuyển sinh, mà còn giúp các em hiểu rõ hơn về cách thức và yêu cầu của môn Toán ở cấp độ cao hơn. Chúng tôi hy vọng rằng, thông qua việc sử dụng bộ tài liệu này, các em sẽ cảm thấy tự tin và sẽ có những kết quả tốt trong hành trình học tập của mình.

Mời các em tham khảo và sử dụng Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất này để có được sự chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.

40 Đề thi Toán vào lớp 10 chọn lọc là nguồn tư liệu học rất hữu ích giúp giáo viên trong việc biên soạn, định hướng ra đề thi theo hướng phát triển năng lực, giúp các em học sinh lớp 9 trong quá trình học tập cũng như làm bài thi có hiệu quả.

TOP 40 đề thi Toán vào lớp 10 này có đáp án giải chi tiết kèm theo được trình bày khoa học, logic giúp người học dễ hình dung và hiểu rõ kiến thức. Tài liệu này thích hợp với cả các bạn thi vào lớp 10 các trường chuyên hay không chuyên trong cả nước. Vì thế, khi giải được tất cả các bài toán dưới đây chắc chắn sẽ mang về kết quả mong đợi.

Mục Lục Bài Viết

  • Đề thi vào 10 môn Toán – Đề 1
  • Đề thi vào 10 môn Toán – Đề 2
  • Đề thi vào lớp 10 môn Toán – Đề 3
  • Đề thi vào lớp 10 môn Toán – Đề 4
  • Đề thi tuyển sinh lớp 10 môn Toán – Đề 5
  • Đề thi tuyển sinh lớp 10 môn Toán – Đề 6
  • Đề thi tuyển sinh lớp 10 môn Toán – Đề 7
  • Đề thi Toán vào lớp 10 – Đề 8

Đề thi vào 10 môn Toán – Đề 1

Câu 1: a) Cho biết Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất Đề thi tuyển sinh lớp 10 môn Toán (Có đáp án) và mathrm{b}=2-sqrt{3}. Tính giá trị biểu thức: mathrm{P}=mathrm{a}+mathrm{b}-mathrm{ab}.

Khám Phá Thêm:   Kế hoạch giáo dục môn Toán 7 sách Kết nối tri thức với cuộc sống KHGD Toán lớp 7 (Phụ lục I, II, III Công văn 5512)

b) Giải hệ phương trình: left{begin{array}{l}3 x+y=5 \ x-2 y=-3end{array}right..

Câu 2: Cho biểu thức mathrm{P}=left(frac{1}{mathrm{x}-sqrt{mathrm{x}}}+frac{1}{sqrt{mathrm{x}}-1}right): frac{sqrt{mathrm{x}}}{mathrm{x}-2 sqrt{mathrm{x}}+1}( với mathrm{x}>0, mathrm{x} neq 1)

a) Rút gọn biểu thức P

b) Tìm các giá trị của x để P>frac{1}{2}.

Câu 3: Cho phương trình: mathrm{x}^{2}-5 mathrm{x}+mathrm{m}=0 (m là tham số).

a) Giäi phương trình trên khi mathrm{m}=6.

b) Tim m đề phương trình trên có hai nghiệm mathrm{x}_{1}, mathrm{x}_{2} thỏa mãn: left|mathrm{x}_{1}-mathrm{x}_{2}right|=3.

Câu 4: Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và mathrm{O}). Lấy điềm E trên cung nhỏ BC E khác B và C, AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b)mathrm{AE} cdot mathrm{AF}=mathrm{AC}^{2}

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp Delta CEF luôn thuộc một đường thẳng cố định.

Câu 5: Cho hai số dương a, b thỏa mãn: mathrm{a}+mathrm{b} leq 2 sqrt{2}. Tìm giá trị nhỏ nhất của biểu thức: quad mathrm{P}=frac{1}{mathrm{a}}+frac{1}{mathrm{~b}}.

Đề thi vào 10 môn Toán – Đề 2

Câu 1: a) Rút gọn biểu thức: frac{1}{3-sqrt{7}}-frac{1}{3+sqrt{7}}.

b) Giải phương trình: x^{2}-7 x+3=0.

Câu 2: a) Tìm tọa độ giao điểm của đường thẳng d: y=-x+2 và Parabol (P): y =x^{2}.

b) Cho hệ phương trình: left{begin{array}{l}4 x+a y=b \ x-b y=aend{array}right.. Tìm a và b đề hệ đã cho có nghiệm duy nhất (mathrm{x} ; mathrm{y})=(2 ;-1) .

Câu 3: Một xe lửa cần vận chuyền một lượng hàng. Người lái xe tính rằng nếu xếp mỗi toa 15 tấn hàng thì còn thừa lại 5 tấn, còn nếu xếp mỗi toa 16 tấn thì có thề chở thêm 3 tấn nữa. Hói xe lửa có mấy toa và phải chở bao nhiêu tấn hàng.

Câu 4: Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ mathrm{MI} perp mathrm{AB}, mathrm{MK} perp mathrm{AC}(mathrm{I} in mathrm{AB}, mathrm{K} in mathrm{AC})

a) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.

b) operatorname{Ver} mathrm{MP} perp mathrm{BC}(mathrm{P} in mathrm{BC}). Chứng minh: mathrm{MPK}=mathrm{MBC}.

c) Xác định vị trí của điểm M  trên cung nhỏ BC đề tích MI.MK.MP đạt giá trị lớn nhất.

Câu 5: Giải phương trình: frac{sqrt{x-2009}-1}{x-2009}+frac{sqrt{y-2010}-1}{y-2010}+frac{sqrt{z-2011}-1}{z-2011}=frac{3}{4}

Đề thi vào lớp 10 môn Toán – Đề 3

Câu 1: Giải phương trình và hệ phương trình sau:

a) x^{4}+3 x^{2}-4=0

b) left{begin{array}{l}2 x+y=1 \ 3 x+4 y=-1end{array}right.

Câu 2: Rút gon các biểu thức:

a) A=frac{sqrt{3}-sqrt{6}}{1-sqrt{2}}-frac{2+sqrt{8}}{1+sqrt{2}}

b) mathrm{B}=left(frac{1}{mathrm{x}-4}-frac{1}{mathrm{x}+4 sqrt{mathrm{x}}+4}right) cdot frac{mathrm{x}+2 sqrt{mathrm{x}}}{sqrt{mathrm{x}}} quad

Câu 3:

a) Vẽ đồ thị các hàm số y = – x2 và y = x – 2 trên cùng một hệ trục tọa độ.

b) Tìm tọa độ giao điểm của các đồ thị đã vẽ ở trên bằng phép tính.

Câu 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.

a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.

b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.

c) Chứng minh rằng OA  vuông góc EF.

Câu 5: Tìm giá trị nhỏ nhất của biểu thức:

mathrm{P}=mathrm{x}^{2}-mathrm{x} sqrt{mathrm{y}}+mathrm{x}+mathrm{y}-sqrt{mathrm{y}}+1

Đề thi vào lớp 10 môn Toán – Đề 4

Câu 1:

a) Trục căn thức ở mẫu của các biểu thức sau: frac{4}{sqrt{3}} ; frac{sqrt{5}}{sqrt{5}-1}.

b) Trong hệ trục tọa độ mathrm{Oxy}, biết đồ thị hàm số mathrm{y}=mathrm{ax}^{2} đi qua điểm mathrm{M}left(-2 ; frac{1}{4}right). Tìm hệ số a.

Câu 2: Giải phương trình và hệ phương trình sau:

a) sqrt{2 x+1}=7-x

b) left{begin{array}{l}2 x+3 y=2 \ x-y=frac{1}{6}end{array}right.

Câu 3: Cho phương trình ẩn mathrm{x}: mathrm{x}^{2}-2 mathrm{mx}+4=0 (1)

a) Giải phương trình đã cho khi m = 3

b) Tìm giá trị của m để phương trình (1) có hai nghiêm mathrm{x}_{1}, mathrm{x}_{2} thỏa mãn: left(mathrm{x}_{1}+1right)^{2}+left(mathrm{x}_{2}+1right)^{2}=2.

Câu 4: Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho: mathrm{IEM}=90^{circ} (I và M không trùng với các đỉnh của hình vuông ).

a) Chứng minh rằng BIEM là tứ giác nội tiếp đường tròn.

b) Tính số đo của góc IME

c) Gọi N là giao điểm của tia AM và tia DC ; K là giao điểm của BN và tia EM. Chứng minh mathrm{CK} perp mathrm{BN}

Câu 5: Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:

a b+b c+c a leq a^{2}+b^{2}+c^{2}<2(a b+b c+c a)

Đề thi tuyển sinh lớp 10 môn Toán – Đề 5

Câu 1:

a) Thực hiện phép tính:left(sqrt{frac{3}{2}}-sqrt{frac{2}{3}}right) cdot sqrt{6}

Khám Phá Thêm:   Công nghệ 12 Bài 4: Hệ thống điện quốc gia Giải Công nghệ 12 Điện - Điện tử Kết nối tri thức trang 22, 23, 24, 25

b) Trong hệ trục tọa độ Oxy, biết đường thẳng mathrm{y}=mathrm{ax}+mathrm{b} đi qua điểm A (2 ; 3 ) và điểm B (-2 ; 1) Tìm các hệ số a và b.

Câu 2: Giải các phương trình sau:

a) x^{2}-3 x+1=0

b) frac{x}{x-1}+frac{-2}{x+1}=frac{4}{x^{2}-1}

Câu 3: Hai ô tô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc của mỗi ô tô.

Câu 4: Cho đường tròn (O, R) ; AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O; R) cắt các đường thẳng mathrm{AC}, mathrm{AD} thứ tự tại E và F.

a) Chứng minh tứ giác mathrm{ACBD} là hình chữ nhật.

b) Chứng minh triangle mathrm{ACD} sim triangle mathrm{CBE}

c) Chứng minh tứ giác CDFE nội tiếp được đường tròn.

d) Gọi mathrm{S}, mathrm{S}_{1}, mathrm{~S}_{2} thứ tự là diện tích của triangle mathrm{AEF}, triangle mathrm{BCE} và triangle mathrm{BDF}. Chứng minh: sqrt{mathrm{S}_{1}}+sqrt{mathrm{S}_{2}}=sqrt{mathrm{S}}.

Câu 5: Giải phương trình:10 sqrt{mathrm{x}^{3}+1}=3left(mathrm{x}^{2}+2right)

Đề thi tuyển sinh lớp 10 môn Toán – Đề 6

Câu 1: Rút gọn các biểu thức sau:

a) mathrm{A}=left(2+frac{3+sqrt{3}}{sqrt{3}+1}right) cdotleft(2-frac{3-sqrt{3}}{sqrt{3}-1}right)

b) mathrm{B}=left(frac{sqrt{mathrm{b}}}{mathrm{a}-sqrt{mathrm{ab}}}-frac{sqrt{mathrm{a}}}{sqrt{mathrm{ab}}-mathrm{b}}right) cdot(mathrm{a} sqrt{mathrm{b}}-mathrm{b} sqrt{mathrm{a}}) quad( với mathrm{a}>0, mathrm{~b}>0, mathrm{a} neq mathrm{b})

Câu 2:

a) Giải hệ phương trình: left{begin{array}{l}x-y=-1 \ frac{2}{x}+frac{3}{y}=2end{array}right. (2)

b) Gọi mathrm{x}_{1}, mathrm{x}_{2} là hai nghiệm của phương trình:mathrm{x}^{2}-mathrm{x}-3=0. Tính giá trị biểu thức: mathrm{P}=mathrm{x}_{1}^{2}+mathrm{x}_{2}^{2}.

Câu 3:

a) Biết đường thẳng mathrm{y}=mathrm{ax}+mathrm{b} đi qua điểm mathrm{M}left(2 ; frac{1}{2}right) và song song với đường thẳng 2 mathrm{x}+mathrm{y}=3. Tìm các hệ số a và b.

b) Tính các kích thước của một hình chữ nhật có diện tích bằng 40 mathrm{~cm}^{2}, biết rằng nếu tăng mỗi kích thước thêm 3 cm thì diện tích tăng thêm 48 cm2

Câu 4: Cho tam giác mathrm{ABC} vuông tại mathrm{A}, mathrm{M} là một điểm thuộc cạnh AC (M khác A và C). Đường tròn đường kính MC cắt BC tại N và cắt tia BM tại I. Chứng minh rằng:

a) ABNM và ABCI là các tứ giác nội tiếp đường tròn.

b) NM là tia phân giác của góc widehat{mathrm{ANI}}.

c) mathrm{BM} . mathrm{BI}+mathrm{CM} cdot mathrm{CA}=mathrm{AB}^{2}+mathrm{AC}^{2}.

Câu 5: Cho biểu thức A=2 x-2 sqrt{x y}+y-2 sqrt{x}+3. Hỏi A có giá trị nhỏ nhất hay không? Vì sao?

Đề thi tuyển sinh lớp 10 môn Toán – Đề 7

Câu 1:

a) Tìm điều kiện của x biểu thức sau có nghĩa: mathrm{A}=sqrt{mathrm{x}-1}+sqrt{3-mathrm{x}}

b) Tính:frac{1}{3-sqrt{5}}-frac{1}{sqrt{5}+1}

Câu 2: Giải phương trình và bất phương trình sau:

a) (x-3)^{2}=4

b) frac{x-1}{2 x+1}<frac{1}{2}

Câu 3: Cho phương trình ẩn x: x^{2}-2 m x-1=0 (1)

a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x_{1} và x_{2}.

b) Tìm các giá trị của m để: mathrm{x}^{2}+mathrm{x}^{2}{ }^{2}-mathrm{x}_{1} mathrm{X}_{2}=7.

Câu 4: Cho đường tròn (O ; R) có đường kính AB. Vẽ dây cung CD vuông góc với AB (CD không đi qua tâm O). Trên tia đối của tia BA lấy điểm S, SC cắt (O, R) tại điểm thứ hai là M.

a) Chứng minh triangle mathrm{SMA} đồng dạng với triangle mathrm{SBC}.

b) Gọi H là giao điểm của MA và BC; K là giao điểm của MD và AB. Chứng minh BMHK là tứ giác nội tiếp và mathrm{HK} / / mathrm{CD}.

c) Chứng minh: mathrm{OK} . mathrm{OS}=mathrm{R}^{2}.

Câu 5: Giải hệ phương trình: left{begin{array}{l}x^{3}+1=2 y \ y^{3}+1=2 xend{array}right..

Đề thi Toán vào lớp 10 – Đề 8

Câu 1:

a) Giải hệ phương trình: left{begin{array}{l}2 x+y=5 \ x-3 y=-1end{array}right.

b) Gọi mathrm{x}_1, mathrm{x}_2 là hai nghiệm của phương trình: 3 mathrm{x}^2-mathrm{x}-2=0. Tính giá trị biểu thức: quad mathrm{P}= frac{1}{x_1}+frac{1}{x_2}

Câu 2: Cho biểu thức mathrm{A}=left(frac{sqrt{mathrm{a}}}{sqrt{mathrm{a}}-1}-frac{sqrt{mathrm{a}}}{mathrm{a}-sqrt{mathrm{a}}}right): frac{sqrt{mathrm{a}}+1}{mathrm{a}-1} quad với mathrm{a}>0, mathrm{a} neq 1

a) Rút gọn biểu thức A

b) Tìm các giá trị của a để A<0.

Câu 3: Cho phương trình ẩn x: x^2-x+1+m=0(1)

a) Giải phương trình đã cho với m=0.

b) Tìm các giá trị của m để phương trình (1) có hai nghiệm mathrm{x}_1, mathrm{x}_2 thỏa mãn: quad mathrm{x}_1 mathrm{x}_2 cdotleft(mathrm{x}_1 mathrm{x}_2-2right)= 3left(x_1+x_2right).

Câu 4: Cho nửa đường tròn tâm O đường kính mathrm{AB}=2 mathrm{R} và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên {Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; AB cắt nửa đường tròn O) tại D, D khác B).

a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.

b) Chứng minh widehat{mathrm{ADE}}=widehat{mathrm{ACO}}.

c) Vẽ CH vuông góc với mathrm{AB}(mathrm{H} in mathrm{AB}). Chứng minh rằng MB đi qua trung điểm của CH.

Câu 5: Cho các số mathrm{a}, mathrm{b}, mathrm{c} in[0 ; 1]. Chứng minh rằng:mathrm{a}+mathrm{b}^2+mathrm{c}^3-mathrm{ab}-mathrm{bc}-mathrm{ca} leq 1.

………….

Tải file tài liệu để xem thêm đề thi Toán vào lớp 10

………………

Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết

Khám Phá Thêm:   Bài tập cuối tuần lớp 4 môn Toán Kết nối tri thức - Tuần 24 Phiếu bài tập cuối tuần lớp 4

Trên thực tế, việc lựa chọn bộ đề thi vào lớp 10 môn Toán chất lượng và phù hợp không chỉ là một vấn đề quan trọng mà còn mang tính quyết định đối với học sinh và gia đình.

Bộ 40 đề thi được nêu ra trong chủ đề là kết quả của quá trình tuyển chọn kỹ lưỡng và chọn lọc từ nhiều nguồn tư liệu khác nhau. Điều này đảm bảo rằng đề thi đáp ứng đầy đủ các yêu cầu và kiến thức mà học sinh cần nắm vững khi bước vào lớp 10 vào môn Toán.

Một điểm đáng chú ý của bộ đề là sự đa dạng và phong phú của nội dung. Có thể thấy rằng bộ đề này bao gồm các dạng bài tập đa dạng và hợp lý từ cơ bản đến nâng cao. Điều này giúp học sinh có thể nắm vững và vận dụng kiến thức một cách linh hoạt và sáng tạo. Bên cạnh đó, bộ đề cũng tập trung vào việc rèn luyện kỹ năng giải toán và tư duy logic, nhằm phát triển khả năng tư duy và sáng tạo của học sinh.

Bên cạnh sự đa dạng và phong phú của nội dung, bộ đề còn được đánh giá là chất lượng và hay nhất. Những câu hỏi được xây dựng một cách công phu và sắc sảo, đảm bảo độ khó và phân bổ điểm lý tưởng. Điều này giúp học sinh có cơ hội thăng tiến và đạt kết quả tốt hơn trong kỳ thi vào lớp 10 môn Toán.

Không chỉ đáp ứng yêu cầu của kỳ thi vào lớp 10, bộ đề còn là một công cụ hữu ích để thực hiện việc ôn tập và rèn luyện kiến thức hàng ngày. Học sinh có thể sử dụng bộ đề này để củng cố kiến thức, luyện giải toán và nắm vững những kiến thức cơ bản. Điều này giúp xây dựng nền tảng vững chắc và phát triển các kỹ năng toán học quan trọng.

Tóm lại, bộ 40 đề thi vào lớp 10 môn Toán được chọn lọc và hay nhất là một tài liệu quý giá cho học sinh và gia đình. Đây là công cụ hữu ích để ôn tập và rèn luyện kiến thức hàng ngày, giúp học sinh nắm vững kiến thức và đạt kết quả tốt trong kỳ thi vào lớp 10.

Cảm ơn bạn đã xem bài viết Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất Đề thi tuyển sinh lớp 10 môn Toán (Có đáp án) tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

1. Đề thi tuyển sinh lớp 10 môn Toán
2. Bộ 40 đề thi vào lớp 10 môn Toán
3. Đề thi chọn lọc và hay nhất môn Toán
4. Đề thi lớp 10 môn Toán có đáp án
5. Đề thi vào lớp 10 môn Toán
6. Đề thi tuyển sinh lớp 10 môn Toán có đáp án
7. Đề thi chọn lọc đều môn Toán lớp 10
8. Bộ đề thi vào lớp 10 môn Toán
9. Đề thi tuyển sinh vào lớp 10 môn Toán
10. Bộ đề thi lớp 10 môn Toán có đáp án
11. Đề thi vào lớp 10 môn Toán chọn lọc
12. Bộ 40 đề thi lớp 10 môn Toán
13. Đáp án đề thi tuyển sinh lớp 10 môn Toán
14. Đề thi vào lớp 10 môn Toán hay nhất
15. Đề thi tuyển sinh môn Toán lớp 10.

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Cách làm kem trộn trắng da mặt cấp tốc, an toàn tại nhà
Next Post: Dầu dừa có tác dụng gì? Cách sử dụng dầu dừa hiệu quả »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích