Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & các dạng bài tập Đường tròn ngoại tiếp tam giác

Tháng 8 14, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & các dạng bài tập Đường tròn ngoại tiếp tam giác tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Đường tròn ngoại tiếp của tam giác là đường tròn đi qua các đi qua tất cả các đỉnh của tam giác đó. Tâm của đường tròn ngoại tiếp là giao điểm của ba đường trung trực của tam giác đó.

Trong bài viết dưới đây thcshuynhphuoc-np.edu.vn xin giới thiệu đến các bạn học sinh lớp 9 và quý thầy cô toàn bộ kiến thức về tâm đường tròn ngoại tiếp tam giác như: khái niệm, cách xác định, bán kính đường tròn, các dạng bài tập và một số bài tập có đáp án kèm theo. Thông qua tài liệu về tâm đường tròn ngoại tiếp tam giác các bạn có thêm nhiều gợi ý ôn tập, củng cố kiến thức, làm quen với các dạng bài tập để đạt được kết quả cao trong các bài kiểm tra, bài thi học kì 1 Toán 9.

Mục Lục Bài Viết

  • 1. Đường tròn ngoại tiếp tam giác là gì?
  • 2. Tâm đường tròn ngoại tiếp là gì?
  • 3. Tính chất đường tròn ngoại tiếp
  • 4. Các công thức tính bán kính đường tròn ngoại tiếp
  • 5. Cách xác định tâm đường tròn ngoại tiếp tam giác
  • 6. Phương trình đường tròn ngoại tiếp tam giác
  • 7. Bán kính đường tròn ngoại tiếp tam giác
  • 8. Bài tập về đường tròn ngoại tiếp tam giác
  • 9. Bài tập tâm đường tròn ngoại tiếp tam giác

1. Đường tròn ngoại tiếp tam giác là gì?

Đường tròn ngoại tiếp của tam giác là đường tròn đi qua các đi qua tất cả các đỉnh của tam giác đó. Tâm của đường tròn ngoại tiếp là giao điểm của ba đường trung trực của tam giác đó.

Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & các dạng bài tập Đường tròn ngoại tiếp tam giác

2. Tâm đường tròn ngoại tiếp là gì?

Giao của 3 đường trung trực trong tam giác là tâm đường tròn ngoại tiếp (hoặc có thể là 2 đường trung trực).

3. Tính chất đường tròn ngoại tiếp

– Mỗi tam giác chỉ có 1 đường tròn ngoại tiếp.

– Tâm của đường tròn ngoại tiếp tam giác là giao điểm giữa 3 đường trung trực của tam giác.

– Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.

– Đối với tam giác đều, tâm đường tròn ngoại tiếp và nội tiếp tam giác trùng với nhau.

4. Các công thức tính bán kính đường tròn ngoại tiếp

Công thức tính bán kính đường tròn ngoại tiếp tam giác bằng tích của 3 cạnh tam giác chia bốn lần diện tích:

Khám Phá Thêm:   Đáp án trắc nghiệm tập huấn môn Lịch sử - Địa lí 9 sách Kết nối tri thức với cuộc sống Tập huấn sách giáo khoa lớp 9 năm 2024 - 2025

R=(a times b times c): 4 S

Công thức tính bán kính đường tròn ngọai tiếp của góc mathrm{A}

r_{a}=frac{2 S}{b+c-a}=frac{S}{p-a}=p cdot tan frac{A}{2}

Công thức tính bán kính đường tròn ngọai tiếp của góc B

r_{b}=frac{2 S}{c+a-b}=frac{S}{p-b}=p cdot tan frac{B}{2}

Công thức tính bán kính đường tròn ngọi tiếp của góc C

r_{c}=frac{2 S}{a+b-c}=frac{S}{p-c}=p cdot tan frac{C}{2}

5. Cách xác định tâm đường tròn ngoại tiếp tam giác

Xác định tâm của đường tròn ngoại tiếp tứ giác

+ Tứ giác có bốn đỉnh các đều một điểm. Điểm đó là tâm đường tròn ngoại tiếp tam giác

+ Lưu ý: Quỹ tích các điểm nhìn đoạn thẳng AB dưới một góc vuông là đường tròn đường kính AB

– Có 2 cách để xác định tâm đường tròn ngoại tiếp tam giác như sau:

– Cách 1

+ Bước 1: Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC. Ta có IA=IB=IC=R

+ Bước 2: Tọa độ tâm I là nghiệm của hệ phương trình left{begin{matrix} IA^2=IB^2\ IA^2=IC^2 end{matrix}right.

– Cách 2:

+ Bước 1: Viết phương trình đường trung trực của hai cạnh bất kỳ trong tam giác.

+ Bước 2: Tìm giao điểm của hai đường trung trực này, đó chính là tâm của đường tròn ngoại tiếp tam giác.

– Như vậy Tâm của đường tròn ngoại tiếp tam giác ABC cân tại A nằm trên đường cao AH

Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền

6. Phương trình đường tròn ngoại tiếp tam giác

Viết phương trình đường tròn ngoại tiếp tam giác ABC khi biết tọa độ 3 đỉnh.

Để giải được bài toán viết phương trình đường tròn ngoại tiếp tam giác ta thực hiện theo 4 bước sau:

+ Bước 1: Thay tọa độ mỗi đỉnh vào phương trình với ẩn a,b,c (Bởi các đỉnh thuộc đường tròn ngoại tiếp, nên tọa độ các đỉnh thỏa mãn phương trình đường tròn ngoại tiếp cần tìm)

+ Bước 2: Giải hệ phương trình tìm a,b,c

+ Bước 3: Thay giá trị a,b,c tìm được vào phương trình tổng quát ban đầu => phương trình đường tròn ngoại tiếp tam giác cần tìm.

+ Bước 4: Do A,B,C ∈ C nên ta có hệ phương trình:

left{begin{matrix} x_{A}^{2} + y_{A}^{2} – 2ax_{A} – 2by_{A} + c = 0\ x_{B}^{2} + y_{B}^{2} – 2ax_{B} – 2by_{B} + c = 0\ x_{C}^{2} + y_{C}^{2} – 2ax_{C} – 2by_{C} + c = 0 end{matrix}right.

=> Giải hệ phương trình trên ta tìm được a, b, c.

Thay a, b, c vừa tìm được vào phương trình (C) ta có phương trình đường tròn ngoại tiếp tam giác cần tìm.

7. Bán kính đường tròn ngoại tiếp tam giác

Cho tam giác ABC

Gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB. S là diện tích tam giác ABC

Ta có bán kính đường tròn nội tiếp tam giác ABC là:

Khám Phá Thêm:   Soạn bài Đi tìm mặt trời (trang 116) Tiếng Việt lớp 3 Kết nối tri thức Tập 1 - Tuần 14

R=frac{a.b.c}{4S}

8. Bài tập về đường tròn ngoại tiếp tam giác

Dạng 1: Viết phương trình đường tròn nội tiếp tam giác ABC khi biết tọa độ 3 đỉnh

VD: Viết phương trình đường tròn ngoại tiếp tam giác A, B, C biết A(-1;2) B(6;1) C(-2;5)

Cách giải:

Gọi phương trình đường tròn ngoại tiếp tam giác ABC có dạng:

(C) x^2 + y^2 -2ax -2by +c =0

Do A, B, C cùng thuộc đường tròn nên thay tọa độ A, B, C lần lượt vào phương trình đường tròn (C) ta được hệ phương trình:

left{begin{matrix} 2a-4b+c=-5\ 12a+2b-c=37\ 4a-10b+c=-29 end{matrix}right. Leftrightarrow left{begin{matrix} a=3\ b=5\ c=9 end{matrix}right.

Do đó, Phương trình đường tròn ngoại tiếp tam giác ABC tâm I (3;5) bán kính R = 5 là:

x^2+y^2-6x-10y+9=0 hoặc (x-3)^2+(y-5)^2=25

Dạng 2: Tìm tâm của đường tròn ngoại tiếp khi biết tọa độ ba đỉnh

Ví dụ: Cho tam giác ABC với A(1;2), B(-1;0), C(3;2). Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác ABC

Hướng dẫn cách giải

Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC

underset{IA}{rightarrow} = (1-x;2-y) Rightarrow IA= sqrt{(1-x)^2+(2-y)^2}

underset{IB}{rightarrow} = (-1-x;-y) Rightarrow IB= sqrt{(1-x)^2+y^2}

underset{IC}{rightarrow} = (3-x;2-y) Rightarrow IC= sqrt{(3-x)^2+(2-y)^2}

Vì I là tâm của đường tròn ngoại tiếp tam giác ABC nên ta có:

IA=IB=IC Leftrightarrow left{begin{matrix} IA^2=IB^2\ IA^2=IC^2 end{matrix}right. Leftrightarrow left{begin{matrix} (1-x)^2 + (2-y)^2 = (-1-x)^2 +y^2\ (1-x)^2 + (2-y)^2 = (3-x)^2 + (2-y)^2 end{matrix}right.

Leftrightarrow left{begin{matrix} x+y=1\ x=2 end{matrix}right. Leftrightarrow left{begin{matrix} x=2\ y=-1 end{matrix}right.

Vậy tọa độ tâm của đường tròn ngoại tiếp tam giác ABC là I(2;-1)

Dạng 3: Tìm bán kính đường tròn nội tiếp tam giác

VD: Tam giác ABC có cạnh AB = 3, AC = 7, BC = 8. Tính bán kính đường tròn ngoại tiếp tam giác ABC

Cách giải:

Ta có: p=frac{AB + AC + BC}{2} = frac{3 + 7 + 8}{2} = 9

Áp dụng công thức Herong:

S=sqrt{p(p-AB)(p-AC)(p-BC)} = sqrt{9(9-3)(9-7)(9-8)} = 6sqrt{3}

Bán kính đường tròn ngoại tiếp tam giác ABC:

R=frac{AB.AC.BC}{4S} = frac{3.7.8}{4.6sqrt{3}}

VD 4: Cho tam giác MNP vuông tại N, và MN = 6cm, NP = 8cm. Xác định bán kính đường tròn ngoại tiếp tam giác MNP bằng bao nhiêu?

Cách giải:

Áp dụng định lý Pytago ta có:

PQ = 1/2 MP => NQ = QM = QP = 5cm.

Gọi D là trung điểm MP => ∆MNP vuông tại N có NQ là đường trung tuyến ứng với cạnh huyền MP.

=> Q là tâm đường tròn ngoại tiếp ∆MNP.

Suy ra: Đường tròn ngoại tiếp ∆MNP có tâm Q của cạnh huyền MP và bán kính R = MQ = 5cm.

VD 5: Cho tam giác ABC đều với cạnh bằng 6cm. Xác định tâm và bán kính của đường tròn ngoại tiếp tam giác ABC?

Cách giải

Gọi D, E lần lượt là trung điểm của cạnh BC, AB và AD giao với CE tại O

Ta có: Tam giác ABC đều => Đường trung tuyến cũng là đường cao, đường phân giác, đường trung trực của tam giác.

Suy ra: O là tâm đường tròn ngoại tiếp tam giác.

∆ABC có CE là đường trung tuyến => CE cũng là đường cao.

Áp dụng định lí Pytago vào tam giác vuông AEC có:

CE2 = AC2 – AE2 = 62 – 32 = 27 => CE =3√3cm.

Ta có: O là trọng tâm của tam giác ABC => CO = 2/3 CE = (2/3)3√3 = 2√3cm.

Khám Phá Thêm:   Học Excel - Bài 24: Tất cả các bước tạo biểu đồ trong Excel

Suy ra: Tâm đường tròn ngoại tiếp tam giác ABC là trọng tâm O và bán kính là OC = 2√3cm.

VD5: Cho tam giác MNP vuông tại N, và MN=6 cm, N P=8 cm,. Xác định bán kính đường tròn ngoại tiếp tam giác MNP bằng bao nhiêu?

Giải:

Đáp án bài tập 1

Áp dụng định lý Pytago ta có:

P Q=1 / 2 M P=>N Q=Q M=Q P=5 mathrm{~cm}

Gọi D là trung điểm M P=>Delta M N P vuông tại N có NQ là đường trung tuyến ứng với cạnh huyền M P. Rightarrow mathrm{Q} là tâm đường tròn ngoại tiếp Delta mathrm{MNP}.

Suy ra: Đường tròn ngoại tiếp Delta mathrm{MNP} có tâm Q của cạnh huyền MP và bán kính mathrm{R}=mathrm{MQ}=5 mathrm{~cm}.

9. Bài tập tâm đường tròn ngoại tiếp tam giác

Bài 1: Các đường cao AD, BE của tam giác ABC cắt nhau tại H (góc C khác góc vuông) và cắt đường tròn (O) ngoại tiếp tam giác ABC lần lượt tại I và K.

a, Chứng minh tứ giác CDHE nội tiếp và xác định tâm của đường tròn ngoại tiếp tứ giác đó

b, Chứng minh tam giác CIK là tam giác cân

Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O; R). Ba đường của tam giác là AF, BE và CD cắt nhau tại H. Chứng minh tứ giác BDEC là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác

Bài 3: Cho tam giác ABC vuông tại A có AB < AC, đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của BD. Gọi E là chân đường vuông góc hạ từ C xuống đường thẳng AD. Chứng minh tứ giác AHEC nội tiếp và xác định vị trí tâm O của đường tròn ngoại tiếp tứ giác đó.

Bài 4: 

Cho tam giác ABC cân tại A, AB = AC nội tiếp đường tròn tâm O. Các đường cao AQ, BE, CF cắt nhau tại một điểm.

a, Chứng minh rằng tứ giác AEHF là tứ giác nội tiếp, xác định tâm của đường tròn ngoại tiếp tứ giác đó

b, Cho bán kính đường tròn tâm I là 2cm góc BAC = 500. Tính độ dài cung EHF của đường tròn tâm I và diện tích hình quạt tròn IEHF

Cảm ơn bạn đã xem bài viết Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & các dạng bài tập Đường tròn ngoại tiếp tam giác tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
Previous Post: « Chữ ký tên Quân – Những mẫu chữ ký tên Quân đẹp nhất
Next Post: Hà Trí Quang là ai? Tiểu sử diễn viên Hà Trí Quang »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11
  • Viết bài văn kể lại một câu chuyện về trí thông minh hoặc khả năng tìm tòi, sáng tạo của con người Kể lại một câu chuyện đã đọc hoặc đã nghe lớp 4 KNTT

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích