Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích

Phương trình vô nghiệm khi nào? Bài tập tìm m để phương trình vô nghiệm

Tháng 8 5, 2023 by Thcshuynhphuoc-np.edu.vn

Bạn đang xem bài viết Phương trình vô nghiệm khi nào? Bài tập tìm m để phương trình vô nghiệm tại thcshuynhphuoc-np.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Phương trình là một trong những khái niệm quan trọng trong toán học, và việc tìm hiểu về các trường hợp khi phương trình vô nghiệm cũng là một bài toán thú vị. Trong bài viết này, chúng ta sẽ cùng tìm hiểu về phương trình vô nghiệm và giải một bài tập cụ thể liên quan đến việc tìm m để phương trình trở thành vô nghiệm.

Phương trình vô nghiệm khi nào? Một trong những bài toán các bạn học sinh vẫn thường gặp là “tìm m để phương trình vô nghiệm”. Bài viết này của Chúng Tôi sẽ tổng hợp kiến thức về phương trình vô nghiệm, đưa ra những dạng toán thường gặp về phương trình vô nghiệm và cách giải chi tiết nhất. Hy vọng giúp các bạn học sinh rèn luyện thêm kiến thức để chuẩn bị cho các kì thi thật tốt. Cùng khám phá ngay thôi nào!

Mục Lục Bài Viết

  • Phương trình vô nghiệm là gì?
  • Phương trình vô nghiệm khi nào? Điều kiện để phương trình vô nghiệm
    • Phương trình vô nghiệm khi nào?
    • Điều kiện để phương trình vô nghiệm là gì?
  • Công thức phương trình vô nghiệm
  • Một số bài mẫu tìm m để phương trình vô nghiệm

Phương trình vô nghiệm là gì?

Phương trình vô nghiệm là phương trình không có nghiệm nào. Phương trình vô nghiệm có tập nghiệm là S = Ø

Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc vô số nghiệm.

Phương trình vô nghiệm khi nào? Điều kiện để phương trình vô nghiệm

Phương trình vô nghiệm khi nào?

Bất phương trình vô nghiệm <=> a=0 và b xét với dấu > thì b ≤0≤0; với dấu < thì b ≥0.

Khám Phá Thêm:   Benchmark là gì? Tầm quan trọng của Benchmark trong kinh doanh

Điều kiện để phương trình vô nghiệm là gì?

Phương trình bậc nhất một ẩn:

Phương trình bậc nhất một ẩn ax + b = 0 vô nghiệm khi a = 0, b ≠ 0

Phương trình bậc hai một ẩn:

Phương trình bậc hai một ẩn ax + bx + c = 0 vô nghiệm khi a ≠ 0, ∆ < 0

Công thức phương trình vô nghiệm

Phương trình bậc nhất một ẩn:

Xét phương trình bậc nhất có dạng ax + b = 0.

Nếu a = 0, b ≠ 0 thì phương trình vô nghiệm.

Phương trình bậc hai một ẩn:

Xét phương trình bậc hai có dạng ax^2 + bx + c = 0 (a ≠ 0).

  • Công thức nghiệm tính delta (ký hiệu là ∆).

Phương trình vô nghiệm khi nào? Bài tập tìm m để phương trình vô nghiệm

Nếu ∆ < 0 thì phương trình vô nghiệm.

  • Công thức nghiệm thu gọn tính ∆’ (chỉ tính ∆’ khi hệ số b chẵn).

phuong-trinh-vo-nghiem-khi-nao

Với b = 2b’

Nếu ∆’ < 0 thì phương trình vô nghiệm.

Một số bài mẫu tìm m để phương trình vô nghiệm

Dưới đây là những bài toán tham khảo về dạng toán “tìm m để phương trình vô nghiệm”

Bài 1: Tìm m để phương trình sau vô nghiệm:

phuong-trinh-vo-nghiem-khi-nao

Hướng dẫn:

Do hệ số ở biến x2 là một số khác 0 nên phương trình là phương trình bậc hai một ẩn.

Ta sẽ áp dụng điều kiện để phương trình bậc hai một ẩn vô nghiệm vào giải bài toán.

Để phương trình 5x^2 – 2x + m = 0 vô nghiệm thì ∆’ < 0

⇔ 4 – 5m < 0

⇔ m > ⅘

Vậy với m > ⅘ thì phương trình 5x^2 – 2x + m = 0 vô nghiệm

phuong-trinh-vo-nghiem-khi-nao

Bài 2: Tìm m để phương trình sau vô nghiệm:

phuong-trinh-vo-nghiem-khi-nao

Hướng dẫn:

Do hệ số ở biến x2 có chứa tham số m, nên khi giải bài toán ta phải chia hai trường hợp là m = 0 và m ≠0.

Lời giải: Bài toán được chia thành 2 trường hợp:

TH1: m = 0
Phương trình trở thành phương trình bậc nhất một ẩn 2x + 1 = 0 ⇔ x = -½ (loại)

Với m = 0 thì phương trình mx^2 – 2(m – 1)x + m + 1 = 0 có nghiệm x = -½

TH2: m ≠ 0
Phương trình trở thành phương trình bậc hai một ẩn: mx^2 – 2(m – 1)x + m + 1 = 0

Khám Phá Thêm:   Đột quỵ là gì? Nguyên nhân, dấu hiệu đột quỵ và cách phòng tránh

Để phương trình vô nghiệm thì ∆’ < 0

⇔ (m – 1)^2 – m.(m + 1) < 0

⇔ m^2 – 2m + 1 – m^2 – m < 0

⇔ -3m < -1

⇔ m > ⅓

Vậy với m > ⅓ thì phương trình mx^2 – 2(m – 1)x + m + 1 = 0 vô nghiệm

phuong-trinh-vo-nghiem-khi-nao

Bài 3: Tìm m để phương trình sau vô nghiệm:

phuong-trinh-vo-nghiem-khi-nao

Hướng dẫn:

Do hệ số ở biến x2 là một số khác 0 nên phương trình là phương trình bậc hai một ẩn. Ta sẽ áp dụng điều kiện để phương trình bậc hai một ẩn vô nghiệm vào giải bài toán.

Lời giải: Để phương trình 3×2 + mx + m2 = 0 vô nghiệm thì ∆ < 0

⇔ m^2 – 4.3.m^3 < 0

⇔ -11m^2 < 0∀m ≠ 0

Vậy với mọi m ≠ 0 thì phương trình 3×2 + mx + m2 = 0 vô nghiệm.

phuong-trinh-vo-nghiem-khi-nao

Bài 4: Tìm m để phương trình sau vô nghiệm

phuong-trinh-vo-nghiem-khi-nao

Hướng dẫn:

Do hệ số ở biến x2 có chứa tham số m, nên khi giải bài toán ta phải chia hai trường hợp là m = 0 và m ≠0.

Lời giải:

  • TH1: m = 0
    Phương trình trở thành phương trình bậc nhất một ẩn 0x = -3 (phương trình vô nghiệm)

Với m = 0 thì phương trình vô nghiệm

  • TH2: m ≠ 0
    Để phương trình m2x2 – 2m2x + 4m2 + 6m + 3 = 0 vô nghiệm thì ∆’ < 0

⇔ (-m^2)^2 – m^2 (4m^2 + 6m + 3) < 0

⇔ -3m^4 – 6m^3 – 3m^2 < 0

⇔ -3m^2 .(m^2 + 2m +1) < 0

⇔ -3m^2 .(m+1)^2 < 0∀m ≠ m-1

Vậy với mọi m ≠ – 1 thì phương trình m2x2 – 2m2x + 4m2 + 6m + 3 = 0 vô nghiệm

phuong-trinh-vo-nghiem-khi-nao

Như vậy bài viết trên đã giải đáp được thắc mắc Phương trình vô nghiệm khi nào? Đồng thời với những bài tập mẫu mà Chúng Tôi chia sẻ, hy vọng sẽ giúp các bạn nắm vững kiến thức và rèn luyện tốt hơn. Chúc các bạn học tập tốt!

Trên thực tế, một phương trình vô nghiệm xảy ra khi không có giá trị nào của biến mà khi thay vào phương trình thì phương trình không thỏa mãn. Điều này có thể xảy ra với các phương trình có dạng ax + b = 0, trong đó a và b là các hằng số.

Khám Phá Thêm:   Có mấy loại dầu ôliu? Và công dụng của chúng là gì?

Để tìm các giá trị m để phương trình này vô nghiệm, ta phải xem xét trường hợp khi hệ số a bằng 0.

Nếu a = 0:
– Nếu b khác 0, phương trình sẽ không có nghiệm, vì không có số hạng nào có thể nhân với m và cho kết quả bằng -b.
– Nếu b = 0, phương trình sẽ luôn có vô số nghiệm. Bởi vì mỗi giá trị của m đều làm cho cả hai phía của phương trình bằng 0.

Nếu a khác 0, phương trình sẽ luôn có một nghiệm duy nhất, và không có giá trị của m nào khiến phương trình vô nghiệm.

Tóm lại, phương trình ax + b = 0 sẽ vô nghiệm khi và chỉ khi a = 0 và b khác 0. Nếu a = 0 và b = 0, phương trình sẽ có vô số nghiệm.

Cảm ơn bạn đã xem bài viết Phương trình vô nghiệm khi nào? Bài tập tìm m để phương trình vô nghiệm tại thcshuynhphuoc-np.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Từ Khoá Liên Quan:

1. Phương trình vô nghiệm
2. Giải phương trình vô nghiệm
3. Xác định m để phương trình vô nghiệm
4. Điều kiện phương trình vô nghiệm
5. Số m để phương trình vô nghiệm
6. Phương pháp tìm số m để phương trình vô nghiệm
7. Mảng giá trị m khi phương trình vô nghiệm
8. Tìm m sao cho phương trình vô nghiệm
9. Xét điều kiện phương trình vô nghiệm
10. Xác định miền xác định để phương trình vô nghiệm
11. Tính toán m để phương trình vô nghiệm
12. Hạn chế m để phương trình vô nghiệm
13. Điều kiện tồn tại m để phương trình vô nghiệm
14. Tìm m sao cho phương trình trở thành vô nghiệm
15. Tìm m để phương trình không có nghiệm.

 

  • Share on Facebook
  • Tweet on Twitter
  • Share on LinkedIn

Bài Viết Liên Quan

Hạt óc chó có tác dụng gì? Top 10 tác dụng của hạt óc chó
Hạt óc chó có tác dụng gì? Top 10 tác dụng của hạt óc chó
Lợi ích của việc học tiếng Anh như thế nào?
Lợi ích của việc học tiếng Anh như thế nào?
Trà hoa cúc có tác dụng gì? Cách pha trà hoa cúc đơn giản nhất
Trà hoa cúc có tác dụng gì? Cách pha trà hoa cúc đơn giản nhất
Previous Post: « Văn mẫu lớp 6: Kể lại một trải nghiệm đáng nhớ về người thân trong gia đình 3 Dàn ý & 21 bài văn mẫu lớp 6
Next Post: 1001+ Lời chúc sinh nhật chồng yêu hay và ý nghĩa nhất »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Bài viết mới

  • Christian Fuchs – Tiểu sử, Sự nghiệp và Thành công Đáng Kể của Ngôi Sao Bóng Đá
  • Tiểu sử và Sự Nghiệp Của Ryan Sessegnon: Tài Năng Trẻ Đáng Chú Ý Trong Bóng Đá Anh
  • Phil Foden – Ngôi sao trẻ đầy triển vọng của bóng đá Anh
  • Các cầu thủ nổi tiếng bị rơi vào vòng lao lý
  • Ý Nghĩa Số Áo 14 Trong Bóng Đá
  • Nghị luận về sự cần thiết của việc rèn luyện kĩ năng giao tiếp Tầm quan trọng của việc rèn kĩ năng giao tiếp
  • Phân tích truyện Con chó xấu xí của Kim Lân Viết văn bản nghị luận phân tích một tác phẩm truyện
  • Viết đoạn văn khoảng 200 chữ phân tích một chi tiết kì ảo trong truyện Nữ thần Mặt Trời và Mặt Trăng Những bài văn hay lớp 10
  • Nghị luận về lối sống phông bạt của giới trẻ hiện nay Viết bài văn nghị luận xã hội về hiện tượng đời sống
  • Phân tích đánh giá chủ đề và những nét đặc sắc về nghệ thuật của truyện Con chó xấu xí Những bài văn hay lớp 11

Copyright © 2025 · Thcshuynhphuoc-np.edu.vn - Thông Tin Kiến Thức Bổ Ích